scholarly journals Calcineurin Aα Contributes to IgE-Dependent Mast-Cell Mediator Secretion in Allergic Inflammation

2021 ◽  
pp. 1-15
Author(s):  
Edwin Leong ◽  
Zheng Pang ◽  
Andrew W. Stadnyk ◽  
Tong-Jun Lin

Mast cells (MCs) are key mediators of allergic inflammation through the activation of cross-linked immunoglobulin E (IgE) bound to the high-affinity IgE receptor (FcϵRI) on the cell surface, leading to the release of biologically potent mediators, either from preformed granules or newly synthesized. Pharmacological inhibitors have been developed to target a key signaling protein phosphatase in this pathway, calcineurin, yet there is a lack of genetic and definitive evidence for the various isoforms of calcineurin subunits in FcϵRI-mediated responses. In this study, we hypothesized that deficiency in the calcineurin Aα isoform will result in a decreased allergic immune response by the MCs. In a model of passive cutaneous anaphylaxis, there was a reduction in vascular permeability in MC-deficient mouse tissues reconstituted with calcineurin subunit A (CnAα) gene-knockout (<i>CnAα</i><sup>−/−</sup>) MCs, and in vitro experiments identified a significant reduction in release of preformed mediators from granules. Furthermore, released levels of de novo synthesized cytokines were reduced upon FcϵRI activation of <i>CnAα</i><sup>−/−</sup> MCs in vitro. Characterizing the mechanisms associated with this deficit response, we found a significant impairment of nuclear factor of kappa light polypeptide gene enhancer in B cell phosphorylation and impaired nuclear factor kappa-light-chain-enhancer of activated B-cell inhibitor alpha (NF-κB) activation. Thus, we concluded that <i>CnAα</i> contributes to the release of preformed mediators and newly synthesized mediators from FcϵRI-mediated activation of MCs, and this regulation includes NF-κB signaling.

Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3638
Author(s):  
Yoon-Young Sung ◽  
Heung-Joo Yuk ◽  
Won-Kyung Yang ◽  
Seung-Hyung Kim ◽  
Dong-Seon Kim

Atopic dermatitis is a persistent inflammatory skin disorder. Siraitia grosvenorii fruits (monk fruit or nahangwa in Korean, NHG) are used as a natural sweetener and as a traditional medicine for the treatment of asthma and bronchitis. We evaluated the activity of S. grosvenorii residual extract (NHGR) on allergic inflammation of atopic dermatitis in a Dermatophagoides farinae mite antigen extract (DfE)-treated NC/Nga murine model and in vitro. Oral administration of NHGR significantly reduced epidermal hyperplasia and inflammatory cell infiltration in the skin lesions of DfE-induced atopic dermatitis, as well as the dermatitis severity score. NHGR reduced serum immunoglobulin E levels. Splenic concentrations of IFN-γ, interleukin (IL)-4, IL-5, and IL-13 were reduced by NHGR administration. Immunohistofluorescence staining showed that NHGR administration increased the protein levels of claudin-1, SIRT1, and filaggrin in atopic dermatitis skin lesions. In addition, NHGR inhibited the phosphorylation of mitogen-activated protein kinases and decreased filaggrin and chemokine protein expression in TNF-α/IFN-γ-induced human keratinocytes. Moreover, NHGR also inhibited histamine in mast cells. The quantitative analysis of NHGR revealed the presence of grosvenorine, kaempferitrin, and mogrosides. These results demonstrate that NHGR may be an efficient therapeutic agent for the treatment of atopic dermatitis.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 241-247 ◽  
Author(s):  
D Delia ◽  
G Cattoretti ◽  
N Polli ◽  
E Fontanella ◽  
A Aiello ◽  
...  

Abstract The CD1 cluster of monoclonal antibodies (MoAbs) CD1a, CD1b, and CD1c, identifies molecules that are differentially expressed on hematopoietic and nonhematopoietic tissues. Our earlier finding that the mantle zone (MZ) but not the germinal center (GC) of normal lymph nodes (LN) is CD1c+, CD1a-, and CD1b- prompted us to further investigate the expression of these molecules on normal, activated, and malignant B cells. We report that blood and spleen contain CD1c+ B cells that account for 49% +/- 20.4% (mean +/- SD) and 50.9% +/- 4.4% of the total B cell population, respectively. CD1a- and CD1b-specific MoAbs are unreactive with both B and T cells; these latter are CD1c- as well. When CD1c+ and CD1c- B cells are activated in vitro, the CD1c molecule is upregulated in the former subset and induced de novo in the latter. Conversely, activated blood T cells remain CD1c-. Neither CD1a nor CD1b molecules are detected on activated T and B lymphocytes. At ultrastructural level, the CD1c+ B cells exhibit distinctive features, namely, condensed chromatin with or without a nucleolus and a unique cluster of cytoplasmic vesicles and organelles; the number of nucleolated cells is higher in the spleen (95%) than in the tonsil (40%) or blood (5%). These findings further confirm the similarity between blood and MZ B cells. The CD1c expression assessed on 27 B-cell chronic lymphocytic leukemias (B-CLL) and 46 B non-Hodgkin's lymphomas (B-NHL) was detected on 41% and 32% of cases, respectively; the latter comprised four follicular and 11 diffuse histotypes. The Burkitt's lymphomas were CD1c-negative. The B-cell neoplasms were all CD1a- and, except for four with a weak cytoplasmic staining, all CD1b- as well. The clear-cut CD1c distribution in normal LN (MZ+, GC-) contrasted with the evidence that some B-NHL cells of GC origin (eg, follicular with predominantly small cleaved cells) were CD1c+. Overall, the finding that CD1c expression is restricted to a fraction of B cells present in lymphoid organs and in peripheral blood indicates that CD1c is a powerful marker for the identification and dissection of B-cell subsets whose functional properties can now be evaluated.


2018 ◽  
Vol 46 (11) ◽  
pp. 5547-5560 ◽  
Author(s):  
Kuo-Hsuan Hung ◽  
Yong H Woo ◽  
I-Ying Lin ◽  
Chin-Hsiu Liu ◽  
Li-Chieh Wang ◽  
...  

Abstract T follicular helper (Tfh) cell-derived signals promote activation and proliferation of antigen-primed B cells. It remains unclear whether epigenetic regulation is involved in the B cell responses to Tfh cell-derived signals. Here, we demonstrate that Tfh cell-mimicking signals induce the expression of histone demethylases KDM4A and KDM4C, and the concomitant global down-regulation of their substrates, H3K9me3/me2, in B cells. Depletion of KDM4A and KDM4C potentiates B cell activation and proliferation in response to Tfh cell-derived signals. ChIP-seq and de novo motif analysis reveals NF-κB p65 as a binding partner of KDM4A and KDM4C. Their co-targeting to Wdr5, a MLL complex member promoting H3K4 methylation, up-regulates cell cycle inhibitors Cdkn2c and Cdkn3. Thus, Tfh cell-derived signals trigger KDM4A/KDM4C - WDR5 - Cdkn2c/Cdkn3 cascade in vitro, an epigenetic mechanism regulating proper proliferation of activated B cells. This pathway is dysregulated in B cells from systemic lupus erythematosus patients and may represent a pathological link.


2002 ◽  
Vol 365 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Amanda C. FENSOME ◽  
Michelle JOSEPHS ◽  
Matilda KATAN ◽  
Fernando RODRIGUES-LIMA

DT40 cells have approx. 10-fold higher Mg2+-dependent neutral sphingomyelinase (NSM) activity in comparison with other B-cell lines and contain very low acidic sphingomyelinase activity. Purification of this activity from DT40 cell membranes suggested the presence of one major NSM isoform. Although complete purification of this isoform could not be achieved, partially purified fractions were examined further with regard to the known characteristics of previously partially purified NSMs and the two cloned enzymes exhibiting in vitro NSM activity (NSM1 and NSM2). For a direct comparative study, highly purified brain preparations, purified NSM1 protein and Bacillus cereus enzyme were used. Analysis of the enzymic properties of the partially purified DT40 NSM, such as cation dependence, substrate specificity, redox regulation and stimulation by phosphatidylserine, together with the localization of this enzyme to the endoplasmic reticulum (ER), suggested that this NSM from DT40 cells corresponds to NSM1. Further studies aimed to correlate presence of the high levels of this NSM1-like activity in DT40 cells with the ability of these cells to accumulate ceramide and undergo apoptosis. When DT40 cells were stimulated to apoptose by a variety of agents, including the ER stress, an increase in endogenous ceramide levels was observed. However, these responses were not enhanced compared with another B-cell line (Nalm-6), characterized by low sphingomyelinase activity. In addition, DT40 cells were not more susceptible to ceramide accumulation and apoptosis when exposed to the ER stress compared with other apoptotic agents. Inhibition of de novo synthesis of ceramide partially inhibited its accumulation, indicating that the ceramide production in DT40 cells could be complex and, under some conditions, could involve both sphingomyelin hydrolysis and ceramide synthesis.


Blood ◽  
2004 ◽  
Vol 103 (7) ◽  
pp. 2683-2690 ◽  
Author(s):  
Carla E. Blanco-Betancourt ◽  
Anne Moncla ◽  
Michèle Milili ◽  
Yun Liang Jiang ◽  
Evani M. Viegas-Péquignot ◽  
...  

Abstract Immunodeficiency, centromeric region instability, and facial anomalies (ICF) syndrome is a rare autosomal recessive disease. Mutations in the DNA methyltransferase 3B (DNMT3B) gene are responsible for most ICF cases reported. We investigated the B-cell defects associated with agammaglobulinemia in this syndrome by analyzing primary B cells from 4 ICF patients. ICF peripheral blood (PB) contains only naive B cells; memory and gut plasma cells are absent. Naive ICF B cells bear potentially autoreactive long heavy chain variable regions complementarity determining region 3's (VHCDR3's) enriched with positively charged residues, in contrast to normal PB transitional and mature B cells, indicating that negative selection is impaired in patients. Like anergic B cells in transgenic models, newly generated and immature B cells accumulate in PB. Moreover, these cells secrete immunoglobulins and exhibit increased apoptosis following in vitro activation. However, they are able to up-regulate CD86, indicating that mechanisms other than anergy participate in silencing of ICF B cells. One patient without DNMT3B mutations shows differences in immunoglobulin E (IgE) switch induction, suggesting that immunodeficiency could vary with the genetic origin of the syndrome. In this study, we determined that negative selection breakdown and peripheral B-cell maturation blockage contribute to agammaglobulinemia in the ICF syndrome. (Blood. 2004;103:2683-2690)


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 396-396
Author(s):  
Kohta Miyawaki ◽  
Takuji Yamauchi ◽  
Takeshi Sugio ◽  
Kensuke Sasaki ◽  
Hiroaki Miyoshi ◽  
...  

Diffuse large B-cell lymphoma (DLBCL) is among the most common hematological malignancies with varying prognosis. As many as forty percent of patients eventually experience relapsed/refractory disease after combinatorial chemo-immunotherapies, R-CHOP, and prognosis after relapse is dismal. MYC is among the most established prognostic factors and associated with clinically-distinct subsets of DLBCL with poor prognosis: double-expressor lymphoma (DEL) and double-hit lymphoma (DHL). MYC is co-expressed with BCL2 in DEL, which consists of 60% of activated B-cell type DLBCL (ABC-DLBCL) cases, while DHL, defined by coexistence of MYC and BCL2/BCL6 rearrangements, were reportedly observed in 15% of germinal center B-cell like DLBCL (GCB-DLBCL). Considering that MYC-positive DLBCLs exhibit dismal outcomes, pharmacological inhibition of MYC activity is highly demanded; however, direct targeting of MYC has been proven challenging. Here we show that PAICS (phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase), which catalyzes a critical step in de novo purine synthesis, functions downstream of MYC in DLBCL cells. We further show MRT252040, a newly-developed PAICS inhibitor, effectively suppresses proliferation of MYC-driven DLBCL cells in vitro and in vivo. Through the nCounter-based transcriptome profiling of formalin-fixed paraffin-embedded (FFPE) tissues from 170 untreated DLBCL patients, we found that MYC and PAICS were co-expressed and their mRNA levels were among the most predictive for poor prognosis after standard R-CHOP therapy. Their expression levels were particularly high in a subset of ABC-DLBCL and extranodal DLBCL, namely in DEL and DHL cases. Importantly, these findings were validated using three independent cohorts (Schmitz et al. NEJM, 2018). MYC and PAICS expression levels were high in most DLBCL lines and low in normal B cells in the lymph nodes, while they were variable in primary DLBCL tissues, revealed by nCounter and immunofluorescence. This trend was more evident in PAICS due presumably to active de novo purine biosynthesis in highly-proliferative cell lines and a subset of DLBCLs, including MYC-positive DLBCLs. These findings were also validated using the DepMap, a publicly-available genome-wide CRISPR/Cas9 dropout screen datasets. PAICS was among the top-ranked essential genes for the survival of DLBCL cell lines. Since co-expression of MYC and PAICS in a subset of DLBCL were indicative of a functional relationship between the two factors, we explored publicly-available ChIP-seq datasets to see if MYC directly regulates PAICS expression. As expected, MYC ChIP-seq signals were highly enriched near the PAICS promoter in a series of cancer cell lines. Furthermore, shRNA-mediated MYC knockdown led to reduced levels of PAICS mRNA in MYC-positive DLBCL cells and significantly slowed their growth. Collectively, these data suggest that PAICS is a direct transcriptional target of MYC, playing a key role in proliferation of MYC-positive DLBCL cells. To assess the feasibility of PAICS-inhibition as a therapeutic option for MYC-positive DLBCLs, we tested MRT252040 for its anti-lymphoma activity in vitro and in vivo. To do so, we first assessed cell cycle status and Annexin positivity upon MRT252040 treatment using a series of DLBCL cell lines. As expected, MRT252040-mediated PAICS inhibition induced cell cycle arrest and apoptosis. Furthermore, MRT252040 treatment significantly delayed proliferation of DLBCL cell lines, namely those harboring MYC rearrangements. Finally, to assess anti-lymphoma activity of MRT252040 in vivo, we tested MRT252040 efficacy using patient-derived xenograft DLBCL. After xenotransplantation, proportions of lymphoma cells per total mononuclear cells in peripheral blood were examined over time by FACS, and MRT252040 (or vehicle) treatment was initiated once lymphoma cells constituted &gt;0.1%. MRT252040-treated mice survived significantly longer than vehicle-treated mice, indicative of therapeutic efficacy of MRT252040 monotherapy against DLBCL in vivo. Our data suggest that MYC regulates the de novo purine synthesis pathway via directly transactivating PAICS expression. We propose that MRT252040, a newly-developed PAICS inhibitor, warrants attention as a novel therapeutic approach for MYC-positive DLBCLs, which otherwise exhibit poor clinical outcomes. Disclosures Ohshima: SRL, Inc.: Consultancy; Kyowa Kirin Co., Ltd.: Honoraria, Research Funding; Chugai Pharmaceutical Co., Ltd.: Honoraria, Research Funding; Celgene Corp.: Honoraria, Research Funding; NEC Corp.: Research Funding. Akashi:Sumitomo Dainippon, Kyowa Kirin: Consultancy; Celgene, Kyowa Kirin, Astellas, Shionogi, Asahi Kasei, Chugai, Bristol-Myers Squibb: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 711-711
Author(s):  
Anagh Anant Sahasrabuddhe ◽  
Xiaofei Chen ◽  
Kaiyu Ma ◽  
Rui Wu ◽  
Richa Kapoor ◽  
...  

Abstract Introduction: Diffuse large B cell lymphoma (DLBCL) is the most common form of malignant lymphoma and may arise de novo, or through transformation from a pre-existing low-grade B cell lymphoma such as follicular lymphoma (FL). However, the post-translational mechanisms and deregulated pathways underlying the pathogenesis of disease evolution are not fully understood. Methods: We employed integrated functional and structural genomics and mass spectrometry (MS)-driven proteomics which implicated a possible novel tumor suppressor role for a conserved E3 ubiquitin ligase FBXO45 in DLBCL pathogenesis. We generated conditional knockout mice targeting loss of Fbxo45 in germinal center (GC) B-cells using the Cg1-Cre-loxP system and an assortment of CRISPR-mediated knockouts of FBXO45 in B cell lymphoma cells (FL518, BJAB, U2932). We engineered B cell lines (BJAB, U2932) to inducibly express FLAG-tagged FBXO45 to identify candidate substrates of FBXO45 using liquid chromatography-tandem MS. In vitro biochemical and in vivo studies using a variety of genetically-modified lines in xenograft studies in immunodeficient mice were performed to validate observations from proteogenomic studies. Whole genome sequencing (WGS) and genomic copy number studies were interrogated to investigate structural alterations targeting FBXO45 in primary human lymphoma samples. Results: Conditional targeting of Fbxo45 in GCB-cells in transgenic mice resulted in abnormal germinal center formation with increased number and size of germinal centers. Strikingly, targeted deletion of Fbxo45 in GCB-cells resulted in spontaneous B cell lymphomas with (22/22);100%) penetrance and none of the wild-type (WT) littermates (0/20; 0%) developed lymphoma at 24 months. Macroscopic examination revealed large tumor masses, splenomegaly, and lymphadenopathy at different anatomic locations including ileocecal junction, mesenteric, retroperitoneal and cervical lymph nodes and thymus. Next generation sequencing of immunoglobulin heavy chain genes revealed monoclonal or oligoclonal B cell populations. Using proteomic analysis of affinity-purified FBXO45-immunocomplexes and differential whole proteome analysis from GCB-cells of Fbxo45 wt/wt vs Fbxo45 fl/fl mice, we discovered that FBXO45 targets the RHO guanine exchange factor GEF-H1 for ubiquitin-mediated proteasomal degradation. FBXO45 exclusively interacts with GEF H1 among 8 F-box proteins investigated and silencing of FBXO45 using three independent shRNA and CRISPR-Cas9-mediated knockouts in B-cell lymphoma cell lines promotes RHOA and MAPK activation, B cell growth and enhances proliferation. GEF-H1 is stabilized by FBXO45 depletion and GEF-H1 ubiquitination by FBXO45 requires phosphorylation of GEF-H1. Importantly, FBXO45 depletion and expression of a GEF-H1 mutant that is unable to bind FBXO45 results in GEF-H1 stabilization, promotes hyperactivated RHO and MAPK signaling and B-cell oncogenicity in vitro and in vivo. Notably, this phenotype is reverted by co-silencing of GEF-H1. Inducible ectopic expression of FBXO45 triggers accelerated turnover of GEF H1 and decreased RHOA signaling. Genomic analyses revealed recurrent loss targeting FBXO45 in transformed DLBCL (25%), de novo DLBCL (6.6%) and FL (2.3%). In keeping with our observation of prolonged hyperactivation of pERK1/2 consequent to FBXO45 ablation, in vitro and in vivo studies using B-cell lymphoma cell lines and xenografts demonstrated increased sensitivity to pharmacologic blockade with the MAP2K1/2 (ERK1/2) inhibitor Trametinib. Conclusions: Our findings define a novel FBXO45-GEF-H1-MAPK signalling axis, which plays an important role in DLBCL pathogenesis. Our studies carry implications for potential exploitation of this pathway for targeted therapies. Disclosures Siebert: AstraZeneca: Speakers Bureau. Lim: EUSA Pharma: Honoraria.


2000 ◽  
Vol 68 (9) ◽  
pp. 4913-4922 ◽  
Author(s):  
Humphrey N. Ehigiator ◽  
Andrew W. Stadnyk ◽  
Timothy D. G. Lee

ABSTRACT Infection with the nematode parasite Nippostrongylus brasiliensis induces a pronounced type-2 T-cell response that is associated with marked polyclonal immunoglobulin E (IgE) and IgG1 production in mice. To examine the differential roles of the infection and products produced by nematodes, we investigated a soluble extract of N. brasiliensis for the ability to mediate this type-2 response. We found that the extract induced a marked increase in IgE and IgG1 levels, similar to that induced by the infection. The extract did not affect the level of IgG2a in serum, showing that the effect was specific to IgE and IgG1 (type-2-associated immunoglobulin) rather than inducing a nonspecific increase in all immunoglobulin isotypes. This response was also associated with increased interleukin-4 production in vitro. These results confirm that the extract, like infection, is a strong inducer of polyclonal type-2 responses and a reliable model for investigating the regulation of nematode-induced responses. The extract induced the production of IgG1 when added to in vitro cultures of lipopolysaccharide-stimulated B cells. This provides evidence for the induction of class switch. It did not induce upregulation of IgG1 in naive (unstimulated) B cells or expand B cells in in vitro cultures. Analysis of DNA from the spleens of mice treated with the extract by digestion-circularization PCR demonstrated a marked increase in the occurrence of γ1 switch region gene recombination in the cells in vivo. These results provide strong evidence that soluble worm products are able to mediate the marked polyclonal γ1/ɛ response and that infection is not required to mediate this response. Furthermore, these data provide evidence that the soluble nematode extract induces this effect by causing de novo class switch of B cells and not by an expansion of IgG1 B cells or an increase in antibody production by IgG1 plasma cells.


2003 ◽  
Vol 197 (8) ◽  
pp. 997-1005 ◽  
Author(s):  
Tomohiro Yoshimoto ◽  
Booki Min ◽  
Takaaki Sugimoto ◽  
Nobuki Hayashi ◽  
Yuriko Ishikawa ◽  
...  

Interleukin (IL)-18 synergizes with IL-12 to promote T helper cell (Th)1 responses. Somewhat paradoxically, IL-18 administration alone strongly induces immunoglobulin (Ig)E production and allergic inflammation, indicating a role for IL-18 in the generation of Th2 responses. The ability of IL-18 to induce IgE is dependent on CD4+ T cells, IL-4, and signal transducer and activator of transcription (stat)6. Here, we show that IL-18 fails to induce IgE both in CD1d−/− mice that lack natural killer T (NKT) cells and in class II−/− mice that lack conventional CD4+ T cells. However, class II−/− mice reconstituted with conventional CD4+ T cells show the capacity to produce IgE in response to IL-18. NKT cells express high levels of IL-18 receptor (R)α chain and produce significant amounts of IL-4, IL-9, and IL-13, and induce CD40 ligand expression in response to IL-2 and IL-18 stimulation in vitro. In contrast, conventional CD4+ T cells express low levels of IL-18Rα and poorly respond to IL-2 and IL-18. Nevertheless, conventional CD4+ T cells are essential for B cell IgE responses after the administration of IL-18. These findings indicate that NKT cells might be the major source of IL-4 in response to IL-18 administration and that conventional CD4+ T cells demonstrate their helper function in the presence of NKT cells.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi239-vi239
Author(s):  
Chirayu Chokshi ◽  
David Tieu ◽  
Kevin Brown ◽  
Chitra Venugopal ◽  
Laura Kuhlmann ◽  
...  

Abstract As the most common primary brain tumor in adults causing death, Glioblastoma (GBM) remains a therapeutic challenge. Unchanged for almost two decades, standard therapy is ineffective at preventing disease relapse with a median patient survival of < 15 months. Stem cell-like subpopulations of tumor cells, known as brain tumor initiating cells (BTICs), evade standard therapy and lead to relapse. Whereas previous studies largely focus on pre-treatment primary GBM (pGBM), we conducted a panel of genome-wide CRISPR-Cas9 gene knockout screens to determine modulators of treatment resistance and de novo genetic vulnerabilities arising at disease recurrence. Using our in vitro model of conventional therapy, we identified genes modulating sensitivity and resistance to Temozolomide and/or radiation therapy in patient-derived pGBM BTICs. Genes modulating sensitivity belong to Fanconi anaemia nuclear complex, interstrand cross link repair, and regulation of stem cell maintenance and differentiation. Following in vitro validation of gene knockouts conferring treatment sensitization in multiple pGBM BTIC lines, we continued to conduct the first genome-wide CRISPR-Cas9 screens in patient-derived rGBM BTICs. Focusing on genetic vulnerabilities arising de novo at disease relapse, we introduce the context-specific role of protein tyrosine phosphatase 4A2 (PTP4A2) in rGBM. Genetic knockout or small molecule targeting of PTP4A2 leads to a context-specific vulnerability of rGBM self renewal capacity and in vivo tumorigenecity. To continue our analysis of treatment-refractory GBM and overcome intertumoral heterogeneity, we conducted genome-wide CRISPR-Cas9 gene knockout screens and whole cell proteomics on patient-matched pGBM and rGBM BTICs. With >1000 differentially essential genes, combined functional genetic and proteomic analyses implicates genes involved in mRNA splicing, nucleotide metabolism, and activation of gene expression by sterol regulatory element-binding protein. Together, our functional genetic approach elucidates novel genes regulating treatment resistance and disease recurrence in GBM.


Sign in / Sign up

Export Citation Format

Share Document