scholarly journals Low Concentration of Fecal Valeric Acid at 1 Year of Age Is Linked with Eczema and Food Allergy at 13 Years of Age: Findings from a Swedish Birth Cohort

Author(s):  
Monica Gio-Batta ◽  
Karin Spetz ◽  
Malin Barman ◽  
Lennart Bråbäck ◽  
Elisabeth Norin ◽  
...  

<b><i>Background:</i></b> Short-chain fatty acids (SCFAs) are abundant bacterial metabolites in the gut, with immunomodulatory properties. Hence, they may influence allergy development. Previous studies have linked fecal SCFA pattern during infancy with allergy. However, the association of SCFAs to allergic outcomes in adolescence is not well established. Here, we examined how the fecal SCFA pattern at 1 year of age related to allergy at 13 years of age. <b><i>Methods:</i></b> Levels of 8 SCFAs in fecal samples collected at 1 year of age from 110 children were quantified using gas chromatography. The same individuals were evaluated at 13 years of age for allergic symptoms, allergy diagnosis and allergy medication by questionnaire, and for sensitization using skin prick test against egg, milk, fish, wheat and soy, cat, dog, horse, birch, and timothy grass. <b><i>Results:</i></b> The concentration of fecal valeric acid at 1 year of age was inversely associated with eczema at 13 years of age (OR 0.6, 95% CI: 0.4–1.0, <i>p</i> = 0.049) and showed a trend for inverse association with food allergy at 13 years of age (OR 0.6, 95% CI: 0.4–1.0, <i>p</i> = 0.057). In a sub-group analysis of children with eczema at 1 year of age, a higher concentration of fecal valeric acid was linked with reduced risk of their eczema remaining at 13 years of age (OR 0.2, 95% CI: 0.0–1.5), although this latter analysis did not reach statistical significance (<i>p</i> = 0.12). <b><i>Conclusions:</i></b> Our findings lend further support to the notion of early childhood as a critical period when allergy may be programmed via the gut microbiota. Higher levels of fecal valeric acid may be characteristic of a protective gut microbiota and/or actively contribute to protection from eczema and food allergy.

Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Moira K Differding ◽  
Lawrence J Appel ◽  
Nisa Maruthur ◽  
Stephen Juraschek ◽  
Edgar R Miller ◽  
...  

Background: Murine models indicate that gut microbiota, and the short chain fatty acids (SCFAs) they produce from fermentation of fiber, play a role in blood pressure (BP) regulation. However, few human studies have examined how gut microbiota and serum SCFAs are associated with hypertension. Objective: We examined associations of gut microbiota composition and serum SCFAs with hypertension and BP, hypothesizing an inverse association with serum SCFAs. Methods: We performed a cross-sectional analysis of baseline data from a trial of overweight and obese adult cancer survivors. We measured 1 ) the gut microbiome by extracting microbial DNA from stool and sequencing the 16S rRNA V4 region and 2 ) serum SCFA using liquid chromatography mass spectrometry. Hypertension was defined as systolic BP ≥ 130, diastolic BP ≥ 80 mmHg, self-report, or use of hypertension medications. We used beta-binomial models to test differential abundance of microbial amplicon sequence variants by hypertension , and linear regression to examine log-transformed SCFAs with BP. We adjusted models for age, sex, race, fiber, BMI and medications (in BP models). Results: Of 111 participants with complete data, 73 had hypertension. Hypertensive participants differed by age (mean 62 vs. 56y) and sex (73% vs. 90% female), but not race (46% black) or BMI (mean 35 kg/m 2 ). Alpha and beta diversity were not associated with hypertension (Ps>0.05). Hypertensive participants had higher abundance of Bacteroides, Parabacteroides, Bifidobacterium and Escherichia , and lower Lachnospiraceae, Haemophilus and Faecalibacterium ( Figure) . Serum acetate was negatively associated with systolic BP (β=-3.3 mmHg difference per 1 SD increment acetate, 95% CI: -6.1, -0.6); other SCFAs were not associated (Ps>0.05). Conclusion: A Bacteroides dominated microbiota was positively associated with hypertension. Acetate, the most abundant circulating SCFA, was negatively associated with BP. Determining whether the associations are causal or not warrants further investigation.


2021 ◽  
Author(s):  
Han-Ki Park ◽  
Sang Jin Lee

Abstract Introduction: Although factors initiating the inflammatory response to monosodium urate crystals have been identified, the role of the gut microbiota and their metabolites on gout remain unknown. This study aimed to investigate changes in both gut microbiota and short chain fatty acids (SCFAs) according to inflammatory states of gout in the same patients.Methods: This study enrolled 20 patients with gout in the acute state who had active joints and were followed-up until the recovery state with no active joints. Blood and fecal samples were simultaneously collected within 3 days for each disease state. The stool microbiome was analyzed using 16S rRNA sequencing, and serum SCFAs were measured by gas chromatography-mass spectrometry. Differences in gut microbiome and serum SCFAs were compared between the acute and recovery states.Results: Beta diversity of the microbiome was significantly different between the acute and recovery states in terms of weighted UniFrac distance. In the recovery state, Prevotellaceae (p = 0.006) and the genus Prevotella (p = 0.009) were significantly enriched, whereas Enterobacteriaceae (p = 0.019) and its derivative genus Shigella (p = 0.023) were significantly decreased compared to the acute state. Similarly, the levels of acetate was dramatically increased in the recovery state compared to the acute state (p < 0.010). Levels of propionate and butyrate tended to increase but without statistical significance.Conclusion: Substantial alterations of bacterial composition with promotion of SCFA formation (especially acetate) were found after treatment in patients with gouty arthritis.


2021 ◽  
Author(s):  
Chenyu Zhong ◽  
Zhiwei Dai ◽  
Lingxiong Chai ◽  
Lingping Wu ◽  
Jianhui Li ◽  
...  

Abstract ObjectivesPrevious studies found the dysbiosis of intestinal microbiota in individuals with diabetic kidney disease (DKD),especially the decreased SCFA-producing bacteria. We aimed to investigate stool and serum short-chain fatty acids (SCFAs), gut microbiota-derived metabolites, in individuals with DKD and the correlations. MethodsA total of 30 participants with DKD, 30 participants with type 2 diabetes mellitus (DM) and 30 normal controls (NC) in HwaMei Hospital were recruited from 1/1/2018 to 12/31/2019. Participants with DKD were divided into low estimated glomerular filtration rate (eGFR) (eGFR<60ml/min, n=14) and high eGFR (eGFR≥60ml/min, n=16) subgroups. Stool and serum were measured for SCFAs with gas chromatograph-mass spectrometry.ResultsThe group with DKD showed markedly lower levels of fecal acetate, propionate and butyrate versus NC group (P<0.05), and the lowest fecal total SCFAs concentration among the the groups. The group with DKD also had a lower serum caproate concentration than that with diabetes (P<0.05). In the univariate regression analysis, fecal and serum acetate correlated with eGFR in the group with DKD (OR= 1.013, P=0.072; OR=1.017, P=0.032). The correlation between serum total SCFAs and eGFR showed statistical significance (OR= 0.019, P=0.024) unadjusted and a borderline significance (OR= 1.024, P =0.063) when adjusted for Hb and LDL. The decrease in serum acetate and total SCFAs were found of borderline significant correlation in both subgroups (P=0.055, P=0.050). ConclusionThis study provides evidence that in individuals with DKD, serum and fecal SCFAs levels (fecal level in particular) were lowered, and there was a correlation between lower SCFAs and a worsened renal function.


2020 ◽  
Author(s):  
Jinu Medhi ◽  
Mohan Chandra Kalita

Nuts are a combination of prebiotic fiber and phytonutrients and have antioxidant, anti-inflammatory effects. According to 2005 “My Pyramid” it has been grouped with the meat and bean group. Bioactive compounds of nuts such as resveratrol, phytosterols, phenolic acids, flavonoids, and carotenoids display synergistic effects on preventing many age related pathologies. Resveratrol has been reported to extend the lifespan in model organisms such as yeast, Drosophila and mouse. Reports propose nuts as the best substitute for red meat to reduce mortality risk. Macadamia nuts with a rich source of monounsaturated fats (oleic and palmitoleic acids) imparts cholesterol lowering effects thereby preventing coronary artery disease. Anacardic acid, a phenolic lipid found in cashew nut shells, is specifically enriched in metastatic melanoma patients in response to immunotherapy. The non-bio-accessible materials of nuts serve as a substrate for human gut microbiota. Regular Walnut enriched diet improves lipid content and enhances probiotic and butyrate producing bacteria composition in healthy individuals. This also reduces cardiovascular risk factors by promoting beneficial bacteria. Gut microbiota diversity studies report an enrichment with genera capable of producing short chain fatty acids (SCFA) following consumption of nuts. The prebiotic effect of nuts can be partly from refining butyrate producing bacteria composition. Hence an optimized diet rich with nuts can be an intervention for promoting a healthy microbiota population and thereby improving overall physiology.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Monica Gio-Batta ◽  
Fei Sjöberg ◽  
Karin Jonsson ◽  
Malin Barman ◽  
Anna-Carin Lundell ◽  
...  

AbstractChildren growing up on farms have low rates of allergy, but the mechanism for this protective effect has not been fully elucidated. Short chain fatty acids (SCFAs) produced by the gut microbiota may play a role in protection from allergy. We measured fecal SCFA levels in samples collected from 28 farming and 37 control children over the first 3 years of life using gas chromatography. Data on diet and other host factors were recorded and allergy was diagnosed at 8 years of age. Among all children, median propionic and butyric acid concentration increased over the first 3 years, and longer SCFAs typically appeared by 1 year of age. Farm children had higher levels of iso-butyric, iso-valeric and valeric acid at 3 years of age than rural controls. In addition, children with elder siblings had higher levels of valeric acid at 3 years of age, and dietary factors also affected SCFA pattern. High levels of valeric acid at 3 years of age were associated with low rate of eczema at 8 years of age. The fecal SCFA pattern in farm children suggests a more rapid maturation of the gut microbiota. Valeric acid or associated microbes may have protective potential against eczema.


2020 ◽  
Vol 15 (1) ◽  
pp. 52-56
Author(s):  
Sri Winarti ◽  
Agung Pasetyo

The consumption of prebiotics is known to affect the balance of gut microbiota. The purpose of this study was to explore how a galactomannan-rich effervescent drink can affect the population of Lactobacillus, Bifidobacterium, E. coli, and the concentration of short-chain fatty acids in the cecum of rats. Twenty-eight male Wistar rats (aged 2 months) were divided equally into 7 groups and treated orally each day for 15 days with 2 mL effervescent drinks with increasing levels of prebiotic galactomannan. The dosage of 500 mg galactomannan increased the growth of Lactobacillus spp. and Bifidobacterium spp. with inhibition of the growth of E.coli with increased formation of short-chain fatty acids such as acetate, propionate, and butyrate in the cecum of rats.


2019 ◽  
Vol 26 (19) ◽  
pp. 3567-3583 ◽  
Author(s):  
Maria De Angelis ◽  
Gabriella Garruti ◽  
Fabio Minervini ◽  
Leonilde Bonfrate ◽  
Piero Portincasa ◽  
...  

Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influence the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota.


2019 ◽  
Vol 20 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Mariana Jesus ◽  
Tânia Silva ◽  
César Cagigal ◽  
Vera Martins ◽  
Carla Silva

Introduction: The field of nutritional psychiatry is a fast-growing one. Although initially, it focused on the effects of vitamins and micronutrients in mental health, in the last decade, its focus also extended to the dietary patterns. The possibility of a dietary cost-effective intervention in the most common mental disorder, depression, cannot be overlooked due to its potential large-scale impact. Method: A classic review of the literature was conducted, and studies published between 2010 and 2018 focusing on the impact of dietary patterns in depression and depressive symptoms were included. Results: We found 10 studies that matched our criteria. Most studies showed an inverse association between healthy dietary patterns, rich in fruits, vegetables, lean meats, nuts and whole grains, and with low intake of processed and sugary foods, and depression and depressive symptoms throughout an array of age groups, although some authors reported statistical significance only in women. While most studies were of cross-sectional design, making it difficult to infer causality, a randomized controlled trial presented similar results. Discussion: he association between dietary patterns and depression is now well-established, although the exact etiological pathways are still unknown. Dietary intervention, with the implementation of healthier dietary patterns, closer to the traditional ones, can play an important role in the prevention and adjunctive therapy of depression and depressive symptoms. Conclusion: More large-scale randomized clinical trials need to be conducted, in order to confirm the association between high-quality dietary patterns and lower risk of depression and depressive symptoms.


2020 ◽  
Vol 21 (8) ◽  
pp. 785-798 ◽  
Author(s):  
Abedin Abdallah ◽  
Evera Elemba ◽  
Qingzhen Zhong ◽  
Zewei Sun

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.


Sign in / Sign up

Export Citation Format

Share Document