scholarly journals Implementation of double-layer loaded on octagon microstrip yagi antenna

2021 ◽  
Vol 10 (6) ◽  
pp. 3289-3296
Author(s):  
Kamelia Quzwain ◽  
Alyani Ismail ◽  
Yudiansyah Yudiansyah ◽  
Nadia Media Rizka ◽  
Aisyah Novfitri ◽  
...  

A double-layer loaded on the octagon microstrip yagi antenna (OMYA) at 5.8 GHz industrial, scientific and medical (ISM) Band is investigated in this paper. The double-layer consist of two double positive (DPS) substrates. The OMYA is overlaid with a double-layer configuration were simulated, fabricated and measured. A good agreement was observed between the computed and measured results of the gain for this antenna. According to comparison results, it shows that 2.5 dB improvement of the OMYA gain can be obtained by applying the double-layer on the top of the OMYA. Meanwhile, the bandwidth of the measured OMYA with the double-layer is 14.6%. It indicates that the double-layer can be used to increase the OMYA performance in term of gain and bandwidth.

Frequenz ◽  
2018 ◽  
Vol 72 (9-10) ◽  
pp. 401-406 ◽  
Author(s):  
Feng Wei ◽  
Xin Tong Zou ◽  
Xin Yi Wang ◽  
Bin Li ◽  
Xi Bei Zhao

Abstract A compact differential ultra-wide band (UWB) planar quasi-Yagi antenna is presented in this paper. The proposed antenna consists of a balanced stepped-impedance microstrip-slotline transition structure, a driver dipole and one parasitic strip. A wide differential-mode (DM) impedance bandwidth covering from 3.8 to 9.5 GHz is realized. Meanwhile, a high and wideband common-mode (CM) suppression can be achieved by employing the balanced stepped-impedance microstrip-slotline transition structure. It is noted that the DM passband is independent from the CM response, which can significantly simplify the design procedure. In addition, a reconfigurable sharp DM notched band from 5.6 to 6.7 GHz is generated by adding one pair of quarter-wavelength varactor-loaded short-circuited stubs adjacent to the microstrip line symmetrically. In order to illustrate the effectiveness of the design, two prototypes of the antennas are designed, fabricated, and measured. A good agreement between the simulated and measured results is observed.


2020 ◽  
Vol 12 (9) ◽  
pp. 915-921
Author(s):  
Ling-Ling Yang ◽  
Yan-Hui Ke ◽  
Jian-Xin Chen

AbstractA bidirectional dielectric resonator (DR) antenna array using back-to-back quasi-Yagi antenna configuration is proposed and implemented for the first time. The DR operating at higher-order TE3δ1 mode is used as a magnetic dipole, applying for the driver of quasi-Yagi antenna. Due to the high-order mode employment, the antenna gain can be enhanced. By partially loading the metallic strip on the side wall of the DR, the gain can be further enhanced. In addition, a simple dual Marchand balun is constructed for feeding the two quasi-Yagi antennas directly for bidirectional radiation. To verify the design concept, a prototype operating at the X-band is fabricated and measured. Good agreement between the simulated and measured results can be observed.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Piyapong Dangkham ◽  
Sitthichai Dentri ◽  
Chuwong Phongcharoenpanich ◽  
Prayoot Akkaraekthalin

This research proposes a circularly polarized (CP) single-fed omnidirectional dipole antenna operable in 2.45 GHz frequency for the industrial, scientific, and medical (ISM) radio band applications. The proposed antenna consisted of bisectional dipole core, a pair of quarter-wave baluns, and four diagonally adjoined parasitic braces. The bisectional dipole core was utilized to improve the antenna gain and realize omnidirectional radiation pattern, and the quarter-wave baluns were to symmetrize the current on the bisectional core. The four parasitic braces collectively generated circular polarization. In the study, simulations were conducted using CST Microwave Studio and a prototype antenna fabricated. To validate, experiments were carried out, and simulation and experimental results compared. The finding revealed good agreement between the simulation and experimental results. Essentially, in addition to achieving an antenna gain of 2.07 dBic, the proposed CP single-fed omnidirectional antenna is suited to ISM frequency band applications.


Author(s):  
Amalasofiah S ◽  
Preethi C

A traditional yagi antenna is used for broadband applications. A New Metamaterial Printed Microstrip Yagi -Array Antenna has been introduced here. This antenna is found to operate at 2.4GHz. The microstrip yagi-array antenna is loaded with artificial split ring resonators (SRRs) which is used for achieving the metamaterial effect in the structure. The overall circuit size of the designed antenna is 11.5*11.5*0.25mm3 with reduced cross polarization and the substrate used is FR4 epoxy with dielectric constant 4.4 which is readily available. The designed antenna achieved about 4dB of gain and it also achieved a high directional characteristic of 5-9dB in the operating band. The designed antenna had a minimum return loss of about -8dB. The achievement of narrowband width for ISM band application enhances the efficiency of the antenna at the specified band and reduces the interference level.


2009 ◽  
Vol 79-82 ◽  
pp. 1277-1280
Author(s):  
Yu Zheng ◽  
Xiao Ming Wang ◽  
Wen Bin Li ◽  
Wen Jin Yao

In order to study the effects of liner materials on the formation of Shaped Charges with Double Layer Liners (SCDLL) into tandem Explosively Formed Projectile (EFP), the formation mechanism of DLSCL was studied. Utilizing two-dimensional finite element dynamic code AUTODYN, the numerical simulations on the mechanical phenomenon of SCDLL forming into tandem EFP were carried out. X-ray pictures were obtained after Experiments on SCDLL. Comparisons between experimental results and numerical simulation results have good agreement. It can be concluded from the results that the materials properties and configurations of both liners are crucial to the formation of tandem EFP.


On the model of the electrical double layer previously proposed by the author, equations are derived for the differential capacity of the metal/electrolyte interface in the presence of organic molecules. It is shown that the equations apply even when ions are specifically adsorbed. A method of calculating the amount of adsorption of the organic species from differential capacity data is outlined and applied to published results for thiourea at the mercury aqueous sodium fluoride interface. It is shown that the results are in good agreement with thermodynamic data. From the calculated adsorption d a ta it is shown that thiourea obeys a virial equation of state but that lateral electrostatic forces are probably negligible except at high coverage. The free energy of adsorption as a function of charge has been evaluated and shown to consist of an electrostatic term and a chemical term which decreases as the electron density of the mercury surface decreases.


Author(s):  
Heng Xie

The RELAP5/SCDAP Mod3.2(am5) code is employed to simulate the OSU-AP1000-05 test conducted in the Advanced Plant Experimental (APEX) test facility at Oregon State University (OSU). The APEX-1000 test facility is an one-fourth height, one-half time scale, and reduced pressure integral systems facility to simulate the Westinghouse Advanced Passive 1000 MW (AP1000) pressurized water reactor. OSU-AP1000-05 is a two-inch break at the bottom of cold leg #4 with 3 out of 4 ADS-4 valves of OSU-APEX-1000 facility. RELAP5 predictions are compared to the experimental data generated by the test. The comparison shows good agreement between the predicted and measured sequence of events of some key parameters during the transient. From the comparison results, it could be preliminary concluded that the RELAP5/SCDAP Mod3.2(am5) code are suitable to simulate the small LOCA of APEX.


2021 ◽  
pp. 107754632110224
Author(s):  
Guangding Wang ◽  
Wenjun Yang ◽  
Huiqun Yuan

In this study, the dynamics and stability of a flexible rotor containing liquid in a constant thermal environment are investigated. According to thermoelastic theory, the thermal axial force exerted on the rotor is calculated by using the analytical method. A spinning Rayleigh beam is used as a simplified model of the rotor. Applying the Hamilton principle, the governing equation of motion for the flexible liquid-filled rotor system is derived. Using the obtained model, the stability prediction model and the critical spinning speed for the rotor system are formulated. To demonstrate the validity of the developed model, the present analysis is compared with the results reported in the previous study, and good agreement is observed from the comparison results. Finally, numerical results based on the obtained model are performed for a better understanding of the parameters including filling parameters, mode number, rotatory inertia and thermal effect on the stability, and critical spinning speed of the rotor system.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1258
Author(s):  
Yong Chen ◽  
Gege Lu ◽  
Shiyan Wang ◽  
Jianpeng Wang

In this article, a wideband filtering-radiating Yagi dipole antenna with the coplanar stripline (CPS) excitation form is investigated, designed, and fabricated. By introducing an open-circuited half-wavelength resonator between the CPS structure and dipole, the gain selectivity has been improved and the operating bandwidth is simultaneously enhanced. Then, the intrinsic filtering-radiating performance of Yagi antenna is studied. By implementing a reflector on initial structure, it is observed that two radiation nulls appear at both lower and upper gain passband edges, respectively. Moreover, in order to improve the selectivity in the upper stopband, a pair of U-shaped resonators are employed and coupled to CPS directly. As such, the antenna design is finally completed with expected characteristics. To verify the feasibility of the proposed scheme, a filtering Yagi antenna prototype with a wide bandwidth covering from 3.64 GHz to 4.38 GHz is designed, fabricated, and measured. Both simulated and measured results are found to be in good agreement, thus demonstrating that the presented antenna has the performances of high frequency selectivity and stable in-band gain.


2010 ◽  
Vol 152-153 ◽  
pp. 1293-1296
Author(s):  
Li Hong Wu

Employing the dies for aluminum alloy parts, the hot die-forging forming and numerical simulation of semi-continuous casting Mg-7.0Al-0.4Zn (AZ70) were carried out. It was indicated that AZ70 has a worse fluidity during forging and is consequently difficult to fill fully compared to aluminum alloys. The microstructure of the AZ70 forgings is in good agreement with the strain distribution generated by simulation, and strain distribution can predict the microstructure evolution. The comparison results can give a guideline on developing forging process and controlling forgings quality of the AZ70 alloy.


Sign in / Sign up

Export Citation Format

Share Document