scholarly journals Powerful processing to three-dimensional facial recognition using triple information

Author(s):  
Mohammad Karimi Moridani ◽  
Ahad Karimi Moridani ◽  
Mahin Gholipour

<p><span>Face Detection plays a crucial role in identifying individuals and criminals in Security, surveillance, and footwork control systems. Face Recognition in the human is superb, and pictures can be easily identified even after years of separation. These abilities also apply to changes in a facial expression such as age, glasses, beard, or little change in the face. This method is based on 150 three-dimensional images using the Bosphorus database of a high range laser scanner in a Bogaziçi University in Turkey. This paper presents powerful processing for face recognition based on a combination of the salient information and features of the face, such as eyes and nose, for the detection of three-dimensional figures identified through analysis of surface curvature. The Trinity of the nose and two eyes were selected for applying principal component analysis algorithm and support vector machine to revealing and classification the difference between face and non-face. The results with different facial expressions and extracted from different angles have indicated the efficiency of our powerful processing.</span></p>

Author(s):  
Zhixian Chen ◽  
Jialin Tang ◽  
Xueyuan Gong ◽  
Qinglang Su

In order to improve the low accuracy of the face recognition methods in the case of e-health, this paper proposed a novel face recognition approach, which is based on convolutional neural network (CNN). In detail, through resolving the convolutional kernel, rectified linear unit (ReLU) activation function, dropout, and batch normalization, this novel approach reduces the number of parameters of the CNN model, improves the non-linearity of the CNN model, and alleviates overfitting of the CNN model. In these ways, the accuracy of face recognition is increased. In the experiments, the proposed approach is compared with principal component analysis (PCA) and support vector machine (SVM) on ORL, Cohn-Kanade, and extended Yale-B face recognition data set, and it proves that this approach is promising.


2020 ◽  
Author(s):  
ASHUTOSH DHAMIJA ◽  
R.B DUBEY

Abstract Forage, face recognition is one of the most demanding field challenges, since aging affects the shape and structure of the face. Age invariant face recognition (AIFR) is a relatively new area in face recognition studies, which in real-world implementations recently gained considerable interest due to its huge potential and relevance. The AIFR, however, is still evolving and evolving, providing substantial potential for further study and progress inaccuracy. Major issues with the AIFR involve major variations in appearance, texture, and facial features and discrepancies in position and illumination. These problems restrict the AIFR systems developed and intensify identity recognition tasks. To address this problem, a new technique Quadratic Support Vector Machine- Principal Component Analysis (QSVM-PCA) is introduced. Experimental results suggest that our QSVM-PCA achieved better results especially when the age range is larger than other existing techniques of face-aging datasets of FGNET. The maximum accuracy achieved by demonstrated methodology is 98.87%.


Author(s):  
Pauline Ong ◽  
Tze Wei Chong ◽  
Woon Kiow Lee

The traditional approach of student attendance monitoring system in Universiti Tun Hussein Onn Malaysia is slow and disruptive. As a solution, biometric verification based on face recognition for student attendance monitoring was presented. The face recognition system consisted of five main stages. Firstly, face images under various conditions were acquired. Next, face detection was performed using the Viola Jones algorithm to detect the face in the original image. The original image was minimized and transformed into grayscale for faster computation. Histogram techniques of oriented gradients was applied to extract the features from the grayscale images, followed by the principal component analysis (PCA) in dimension reduction stage. Face recognition, the last stage of the entire system, using support vector machine (SVM) as classifier. The development of a graphical user interface for student attendance monitoring was also involved. The highest face recognition accuracy of 62% was achieved. The obtained results are less promising which warrants further analysis and improvement.


2021 ◽  
pp. 1-15
Author(s):  
Ashutosh Dhamija ◽  
R. B. Dubey

Face recognition is one of the most challenging and demanding field, since aging affects the shape and structure of the face. Age invariant face recognition is a relatively new area in face recognition studies, which in real-world implementations recently gained considerable interest due to its huge potential and relevance. The Age invariant face recognition, however, is still evolving and evolving, providing substantial potential for further study and progress inaccuracy. Major issues with the age invariant face recognition involve major variations in appearance, texture, and facial features and discrepancies in position and illumination. These problems restrict the age invariant face recognition systems developed and intensify identity recognition tasks. To address this problem, a new technique Quadratic Support Vector Machine- Principal Component Analysis (QSVM-PCA) is introduced. Experimental results suggest that our QSVM-PCA achieved better results especially when the age range is larger than other existing techniques of face-aging dataset of FGNET. The maximum accuracy achieved by demonstrated methodology is 98.87%.


2020 ◽  
Vol 10 (3) ◽  
pp. 593-603
Author(s):  
S. Deepa ◽  
V. Vijaya Chamundeeswari

Face recognition is a significant biometric credential in the field of security authentication. It additionally assumes a noteworthy job in image processing and it is applicable in various systems like verifying the identity of the person and in security purpose. Recognizing the face with varying background, poses and illumination are the complexity involved in this face recognition. Many algorithms exist for face recognition, of which, Discrete Wavelet Transform (DWT) with Principal Component Analysis (PCA) works better for recognition of faces. An algorithm using 3 Level-DWT and modified PCA is proposed for feature extraction. The PCA and reconstruction of images using Inverse PCA, help not only for dimensionality reduction, but also to find the least principal components (PC) of an image from which the significant features of a face image can be extracted. The significant features thus extracted are used for classifying genetic and non-genetic faces. Using extracted features from 3 level DWT and PCA, Support vector machine (SVM) is utilized to classify the faces genetically. The proposed extracted features does not intend to certain features like ears, nose and eyes of the face, but corresponds to identify the faces which are genetically similar. Based on the statistical measure analysis, the proposed algorithm 3 Level dwt with modified PCA works well in extracting the features for identifying the faces which are genetically closer. This face recognition application system can be effectively used to treat a patient in other location with complete security. There is no chance for data stealing, since the concerned doctors and patient only will take part in the system. The identification of genetic faces will turn out to be an achievement in the field of health care monitoring systems.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3983
Author(s):  
Ozren Gamulin ◽  
Marko Škrabić ◽  
Kristina Serec ◽  
Matej Par ◽  
Marija Baković ◽  
...  

Gender determination of the human remains can be very challenging, especially in the case of incomplete ones. Herein, we report a proof-of-concept experiment where the possibility of gender recognition using Raman spectroscopy of teeth is investigated. Raman spectra were recorded from male and female molars and premolars on two distinct sites, tooth apex and anatomical neck. Recorded spectra were sorted into suitable datasets and initially analyzed with principal component analysis, which showed a distinction between spectra of male and female teeth. Then, reduced datasets with scores of the first 20 principal components were formed and two classification algorithms, support vector machine and artificial neural networks, were applied to form classification models for gender recognition. The obtained results showed that gender recognition with Raman spectra of teeth is possible but strongly depends both on the tooth type and spectrum recording site. The difference in classification accuracy between different tooth types and recording sites are discussed in terms of the molecular structure difference caused by the influence of masticatory loading or gender-dependent life events.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Naeem Ratyal ◽  
Imtiaz Ahmad Taj ◽  
Muhammad Sajid ◽  
Anzar Mahmood ◽  
Sohail Razzaq ◽  
...  

Face recognition aims to establish the identity of a person based on facial characteristics and is a challenging problem due to complex nature of the facial manifold. A wide range of face recognition applications are based on classification techniques and a class label is assigned to the test image that belongs to the unknown class. In this paper, a pose invariant deeply learned multiview 3D face recognition approach is proposed and aims to address two problems: face alignment and face recognition through identification and verification setups. The proposed alignment algorithm is capable of handling frontal as well as profile face images. It employs a nose tip heuristic based pose learning approach to estimate acquisition pose of the face followed by coarse to fine nose tip alignment using L2 norm minimization. The whole face is then aligned through transformation using knowledge learned from nose tip alignment. Inspired by the intrinsic facial symmetry of the Left Half Face (LHF) and Right Half Face (RHF), Deeply learned (d) Multi-View Average Half Face (d-MVAHF) features are employed for face identification using deep convolutional neural network (dCNN). For face verification d-MVAHF-Support Vector Machine (d-MVAHF-SVM) approach is employed. The performance of the proposed methodology is demonstrated through extensive experiments performed on four databases: GavabDB, Bosphorus, UMB-DB, and FRGC v2.0. The results show that the proposed approach yields superior performance as compared to existing state-of-the-art methods.


Author(s):  
J. Choi ◽  
L. Zhu ◽  
H. Kurosu

In the current study, we developed a methodology for detecting cracks in the surface of paved road using 3D digital surface model of road created by measuring with three-dimensional laser scanner which works on the basis of the light-section method automatically. For the detection of cracks from the imagery data of the model, the background subtraction method (Rolling Ball Background Subtraction Algorithm) was applied to the data for filtering out the background noise originating from the undulation and gradual slope and also for filtering the ruts that were caused by wearing, aging and excessive use of road and other reasons. We confirmed the influence from the difference in height (depth) caused by forgoing reasons included in a data can be reduced significantly at this stage. Various parameters of ball radius were applied for checking how the result of data obtained with this process vary according to the change of parameter and it becomes clear that there are not important differences by the change of parameters if they are in a certain range radius. And then, image segmentation was performed by multi-resolution segmentation based on the object-based image analysis technique. The parameters for the image segmentation, scale, pixel value (height/depth) and the compactness of objects were used. For the classification of cracks in the database, the height, length and other geometric property are used and we confirmed the method is useful for the detection of cracks in a paved road surface.


Sign in / Sign up

Export Citation Format

Share Document