scholarly journals Polarity Classification Tool for Sentiment Analysis in Malay Language

Author(s):  
Normi Sham Awang Abu Bakar ◽  
Ros Aziehan Rahmat ◽  
Umar Faruq Othman

<p>The popularity of the social media channels has increased the interest among researchers in the sentiment analysis(SA) area. One aspect of the SA research is the determination of the polarity of the comments in the social media, i.e. positive, negative, and neutral. However, there is a scarcity of Malay sentiment analysis tools because most of the work in the literature discuss the polarity classification tool in English. This paper presents the development of a polarity classification tool called Malay Polarity Classification Tool(MaCT). This tool is developed based on the AFINN sentiment lexicon for English language. We have attempted to translate each word in AFINN to its Malay equivalent and later, use the lexicon to collect the sentiment data from Twitter. The Twitter data are then classified into positive, negative, and neutral. For the validation purpose, we collect 400 positive tweets, 400 negative tweets, and 200 neutral tweets, and later, run the tweets through our sentiment lexicon and found 90% score for precision, recall and accuracy. Our main contribution in the research is the new AFINN translation for Malay language and also the classification of the sentiment data.</p>

Author(s):  
Mohammed N. Al-Kabi ◽  
Heider A. Wahsheh ◽  
Izzat M. Alsmadi

Sentiment Analysis/Opinion Mining is associated with social media and usually aims to automatically identify the polarities of different points of views of the users of the social media about different aspects of life. The polarity of a sentiment reflects the point view of its author about a certain issue. This study aims to present a new method to identify the polarity of Arabic reviews and comments whether they are written in Modern Standard Arabic (MSA), or one of the Arabic Dialects, and/or include Emoticons. The proposed method is called Detection of Arabic Sentiment Analysis Polarity (DASAP). A modest dataset of Arabic comments, posts, and reviews is collected from Online social network websites (i.e. Facebook, Blogs, YouTube, and Twitter). This dataset is used to evaluate the effectiveness of the proposed method (DASAP). Receiver Operating Characteristic (ROC) prediction quality measurements are used to evaluate the effectiveness of DASAP based on the collected dataset.


Author(s):  
Shailendra Kumar Singh ◽  
Manoj Kumar Sachan

The rapid growth of internet facilities has increased the comments, posts, blogs, feedback, etc., on a large scale on social networking sites. These social media data are available in an unstructured form, which includes images, text, and videos. The processing of these data is difficult, but some sentiment analysis, information retrieval, and recommender systems are used to process these unstructured data. To extract the opinion and sentiment of internet users from their written social media text, a sentiment analysis system is required to develop, which can work on both monolingual and bilingual phonetic text. Therefore, a sentiment analysis (SA) system is developed, which performs well on different domain datasets. The system performance is tested on four different datasets and achieved better accuracy of 3% on social media datasets, 1.5% on movie reviews, 1.35% on Amazon product reviews, and 4.56% on large Amazon product reviews than the state-of-art techniques. Also, the stemmer (StemVerb) for verbs of the English language is proposed, which improves the SA system's performance.


2021 ◽  
Vol 10 (04) ◽  
pp. 15-19
Author(s):  
Nwet Yin Tun Thein ◽  
Khin Mar Soe

In recent years, there has been an increasing use of social media among people in Myanmar and writing review on social media pages about the product, movie, and trip are also popular among people. Moreover, most of the people are going to find the review pages about the product they want to buy before deciding whether they should buy it or not. Extracting and receiving useful reviews over interesting products is very important and time consuming for people. Sentiment analysis is one of the important processes for extracting useful reviews of the products. In this paper, the Convolutional LSTM neural network architecture is proposed to analyse the sentiment classification of cosmetic reviews written in Myanmar Language. The paper also intends to build the cosmetic reviews dataset for deep learning and sentiment lexicon in Myanmar Language.


2021 ◽  
Vol 13 (7) ◽  
pp. 3836
Author(s):  
David Flores-Ruiz ◽  
Adolfo Elizondo-Salto ◽  
María de la O. Barroso-González

This paper explores the role of social media in tourist sentiment analysis. To do this, it describes previous studies that have carried out tourist sentiment analysis using social media data, before analyzing changes in tourists’ sentiments and behaviors during the COVID-19 pandemic. In the case study, which focuses on Andalusia, the changes experienced by the tourism sector in the southern Spanish region as a result of the COVID-19 pandemic are assessed using the Andalusian Tourism Situation Survey (ECTA). This information is then compared with data obtained from a sentiment analysis based on the social network Twitter. On the basis of this comparative analysis, the paper concludes that it is possible to identify and classify tourists’ perceptions using sentiment analysis on a mass scale with the help of statistical software (RStudio and Knime). The sentiment analysis using Twitter data correlates with and is supplemented by information from the ECTA survey, with both analyses showing that tourists placed greater value on safety and preferred to travel individually to nearby, less crowded destinations since the pandemic began. Of the two analytical tools, sentiment analysis can be carried out on social media on a continuous basis and offers cost savings.


Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 248
Author(s):  
Simone Leonardi ◽  
Giuseppe Rizzo ◽  
Maurizio Morisio

In social media, users are spreading misinformation easily and without fact checking. In principle, they do not have a malicious intent, but their sharing leads to a socially dangerous diffusion mechanism. The motivations behind this behavior have been linked to a wide variety of social and personal outcomes, but these users are not easily identified. The existing solutions show how the analysis of linguistic signals in social media posts combined with the exploration of network topologies are effective in this field. These applications have some limitations such as focusing solely on the fake news shared and not understanding the typology of the user spreading them. In this paper, we propose a computational approach to extract features from the social media posts of these users to recognize who is a fake news spreader for a given topic. Thanks to the CoAID dataset, we start the analysis with 300 K users engaged on an online micro-blogging platform; then, we enriched the dataset by extending it to a collection of more than 1 M share actions and their associated posts on the platform. The proposed approach processes a batch of Twitter posts authored by users of the CoAID dataset and turns them into a high-dimensional matrix of features, which are then exploited by a deep neural network architecture based on transformers to perform user classification. We prove the effectiveness of our work by comparing the precision, recall, and f1 score of our model with different configurations and with a baseline classifier. We obtained an f1 score of 0.8076, obtaining an improvement from the state-of-the-art by 4%.


Litera ◽  
2021 ◽  
pp. 38-55
Author(s):  
Rivaa Mukhammad Salem Alsalibi

The subject of this research is the specifics, forms and functions of interaction in social media groups between the representatives of ethnic communities. The goal consists in determination of the role of social networks in adaptation of ethnocultural communities of St. Petersburg. The research is based on the polling technique for acquisition of information on the cognitive, emotional, and behavioral state of a person. The survey was conducted via distribution of questionnaires among the representatives of ethnic groups. The article also employs the method of systematic scientific observation over the social media groups, topic raised therein, as well as reading and analysis of the comments. The scientific novelty of this work consists in outlining of the nature, trends and development prospects of cross-cultural communications as the channel for ethnocultural interaction. &nbsp;The main conclusions, which touch upon users from various ethnic communities who do not have enough experience in organization of activity of social media groups, demonstrate that it causes the loss of the sense of security, accumulation of prejudices and escalation of interethnic conflicts, as well as preference of the with restricted access, which contributes to lock down of the group and impedes adaptation in the accepting society. Stabilization of situation can be achieved by improvement of the quality of content posted in the social media, as well as level of their administration.


2020 ◽  
Vol 9 (2) ◽  
pp. 161
Author(s):  
Komang Dhiyo Yonatha Wijaya ◽  
Anak Agung Istri Ngurah Eka Karyawati

During this pandemic, social media has become a major need as a means of communication. One of the social medias used is Twitter by using messages referred to as tweets. Indonesia currently undergoing mass social distancing. During this time most people use social media in order to spend their idle time However, sometimes, this result in negative sentiment that used to insult and aimed at an individual or group. To filter that kind of tweets, a sentiment analysis was performed with SVM and 3 different kernel method. Tweets are labelled into 3 classes of positive, neutral, and negative. The experiments are conducted to determine which kernel is better. From the sentiment analysis that has been performed, SVM linear kernel yield the best score Some experiments show that the precision of linear kernel is 57%, recall is 50%, and f-measure is 44%


2021 ◽  

The Social Media Handbook provides guidance on long-term developments in the ever-changing social media sector and explains fundamental interrelationships in this field. It describes a strategy model for the development of one’s own solutions, summarises the theories, methods and models of leading authors and shows their practical application, while also highlighting current developments and dealing with the topic of data processing in social media. An examination of the platform economy with its economic functions facilitates the classification of business models in social media. The book also shows how platforms and their algorithms can influence our actions and shape our opinions. With contributions by Prof. Karin Bjerregaard Schlüter, Andrea Braun, Franziska Geue, Tobias Knopf, Markus Korbien, Prof. Dr. Daniel Michelis, Stefan Pfaff, Thanh H. Pham, Tom Reichstein, Prof. Dr. Anna Riedel, Michael Sarbacher, Prof. Dr. Dr. Thomas Schildhauer, Prof. Dr. Hendrik Send, Dr. Stefan Stumpp, Prof. Dr. Sebastian Volkmann, Jan-Benedikt Weber, Julia Weißhaupt, Norman Wiebach und Prof. Dr. Christian Wissing.


2017 ◽  
Vol 10 (8) ◽  
pp. 43 ◽  
Author(s):  
Sayed Salahuddin Ahmed ◽  
Abdulkhaleq Q. A. Hassan

s not it deplorable that in a country that tops in the entire world in using several social media sites does not utilize the same media in acquiring knowledge and skills? In Saudi Arabia, undergraduate students spend a significant amount of time on social media every day, but they are reluctant (or not motivated enough) to use the same media for educational purposes. This study was carried out on the undergraduate English majors of King Khalid University in Muhayil Asir in Saudi Arabia. In the English department, every student carries at least one smart phone with Internet connection, and they are found occupied with their phones on the campus, sometimes even in classrooms, but they are weak both in subject knowledge and skills of English language. The teachers-cum-researchers were baffled with students’ competence because regular users of Internet and social media are supposed to be updated with the subject knowledge as well as confident in using English language. The researchers designed an empirical study to explore students’ rationale of using the social media and their language preference. The study concludes with gloomy findings that students use the media mainly for entertainment and ineffective communication in English language. The worst fact is: they are not motivated enough to use the social media for educational purposes.


Sign in / Sign up

Export Citation Format

Share Document