scholarly journals Prediction of atmospheric pollution using neural networks model of fine particles in the town of Kennedy in Bogota

Author(s):  
Juan Camilo Pedraza ◽  
Oswaldo Alberto Romero ◽  
Helbert Eduardo Espitia

This work shows an application based on neural networks to determine the prediction of air pollution, especially particulate material of 2.5 micrometers length. This application is considered of great importance due to the impact on human health and high impact due to the agglomeration of people in cities. The implementation is performed using data captured from several devices that can be installed in specific locations for a particular geographical environment, especially in the locality of Kennedy in Bogotá. The model obtained can be used for the design of public policies that control air quality.

2021 ◽  
Vol 237 ◽  
pp. 01011
Author(s):  
changwei Xiong ◽  
qingchang Chen

In the area of residential green belt planning, most planners pay attention to the landscape function of green belts, while few researchers consider the impact of green belt on the concentration of fine particulate matter in the air. Based on site investigation, information about plants, buildings and weather in the selected area were collected, combined with air pollution measurement, four CFD models with different green belt composition were built and simulated. The results showed that at the residential cluster scale, green belts had two effects on fine particles: blocking and agglomeration. Under the two effects, the role of green belts in reducing fine particulate pollution was not always positive, improper green belts could even aggravate air pollution. This study discussed the impact of different greenbelt composition on PM2.5 concentration in residential clusters by CFD simulation, providing theoretical and methodological support for green belt planning and healthy city planning.


2021 ◽  
Author(s):  
Patricia Tarín-Carrasco ◽  
Ulas Im ◽  
Camilla Geels ◽  
Laura Palacios-Peña ◽  
Pedro Jiménez-Guerrero

Abstract. Worldwide air quality has worsened in the last decades as a consequence of increased anthropogenic emissions, in particular from the sector of power generation. The evidence of the effects of atmospheric pollution (and particularly fine particulate matter, PM2.5) on human health is unquestionable nowadays, producing mainly cardiovascular and respiratory diseases, morbidity and even mortality. These effects can even enhance in the future as a consequence of climate penalties and future changes in the population projected. Because of all these reasons, the main objective of this contribution is the estimation of annual excess premature deaths (PD) associated to PM2.5 on present (1991–2010) and future (2031–2050) European population by using non-linear exposure-response functions. The endpoints included are Lung Cancer (LC), Chronic Obstructive Pulmonary Disease (COPD), Low Respiratory Infections (LRI), Ischemic Heart Disease (IHD), cerebrovascular disease (CEV) and other Non-Communicable Diseases (other NCD). PM2.5 concentrations come from coupled chemistry-climate regional simulations under present and RCP8.5 future scenarios. The cases assessed include the estimation of the present incidence of PD (PRE-P2010), the quantification of the role of a changing climate on PD (FUT-P2010) and the importance of changes in the population projected for the year 2050 on the incidence of excess PD (FUT-P2050). Two additional cases (REN80-P2010 and REN80-P2050) evaluate the impact on premature mortality rates of a mitigation scenario in which the 80 % of European energy production comes from renewables sources. The results indicate that PM2.5 accounts for nearly 895,000 [95 % confidence interval (95 % CI) 725,000-1,056,000] annual excess PD over Europe, with IHD being the largest contributor to premature mortality associated to fine particles in both present and future scenarios. The case isolating the effects of climate penalty (FUT-P2010) estimates a variation +0.2 % on mortality rates over the whole domain. However, under this scenario the incidence of PD over central Europe will benefit from a decrease of PM2.5 (−2.2 PD/100,000 h.) while in eastern (+1.3 PD/100,000 h.) and western (+0.4 PD/100,000 h.) Europe PD will increase due to increased PM2.5 levels. The changes in the projected population (FUT-P2050) will lead to a large increase of annual excess PD (1,540,000, 95 % CI 1,247,000-1,818,000), +71.96 % with respect to PRE-P2010 and +71.67 % to FUT-P2010) due to the aging of the European population. Last, the mitigation scenario (REN80-P2050) demonstrates that the effects of a mitigation policy increasing the ratio of renewable sources in the energy mix energy could lead to a decrease of over 60,000 (95 % CI 48,500-70,900) annual PD for the year 2050 (a decrease of −4 % in comparison with the no-mitigation scenario, FUT-P2050). In spite of the uncertainties inherent to future estimations, this contribution reveals the need of the governments and public entities to take action and bet for air pollution mitigation policies.


2019 ◽  
Vol 11 (6) ◽  
pp. 1742 ◽  
Author(s):  
Ruoyu Yang ◽  
Weidong Chen

In order to study the present situation regarding SO2 emissions in China, problems are identified and countermeasures and suggestions are put forward. This paper analyzes spatial correlation, influencing factors and regulatory tools of air pollution in 30 provinces on the Chinese mainland from 2006–2015. The results of exploratory spatial data analysis (ESDA) show that SO2 emissions have obvious positive spatial correlations, and atmospheric pollution in China shows obvious spatial overflow effects and spatial agglomeration characteristics. On this basis, the present study analyzes the impact of seven socioeconomical (SE) factors and seven policy tools on air pollution by constructing a STIRPAT model and a spatial econometric model. We found that population pressure, affluence, energy consumption (EC), industrial development level (ID), urbanization level (UL) and the degree of marketization can significantly promote the increase of SO2 emissions, but technology and governmental supervision of the environment have significant inhibitory effects. The reason why China’s air pollution is curbed at present is because the government has adopted a large number of powerful command-controlled supervision measures, to a large extent. Air pollution treatment is like a government-led “political movement”. The effect of the market is relatively weak and public force has not been effectively exerted. In the future, a comprehensive use of a variety of regulation tools is needed, as well as encouraging the public to participate, strengthening the supervision of third parties and building a diversified and all-encompassing supervision mechanism.


2020 ◽  
Author(s):  
Lejian He ◽  
Laijun Zhao ◽  
Yonghong Liu ◽  
Zhaowen Qiu ◽  
H. Oliver Gao

Abstract Background: Cycling to work has been promoted as a green commute in many countries because of its reduced congestion relative to that of cars and its reduced environmental impact on air pollution. However, cyclists might be exposed to higher air pollution, causing adverse health effects. Few studies have examined the respiratory effects of traffic-related air pollution exposure during short-term cycling, especially in developing countries with heavy air pollution. The aim of this study was to assess the impact of air pollution exposure on lung function while cycling in traffic. Methods: Twenty-five healthy adults in total cycled on a specified route in each of three Chinese cities during four periods of a day. Lung function measures were collected immediately before and after cycling. Real-time particulate matter (PM) and the particle number count (PNC) for particles with different sizes were measured along each cycling route, while ambient sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) levels were measured at the nearest stations. Mixed-effect models were used to estimate the impact of short-term air pollution exposure on participants’ lung function measures during cycling. Results: We found that an interquartile increase in particulate matter consisting of fine particles (PM1, aerodynamic diameter £ 1 mm; and PM2.5, aerodynamic diameter £ 2.5 mm) was associated with a significant decrease in forced vital capacity (FVC) (PM1, –5.61%, p = 0.021; PM2.5, –5.57%, p = 0.022). Interquartile increases in the 99th percentile of PNC for fine particles (aerodynamic diameter 0.3–0.4 mm) also had significant negative associations with FVC (0.3 mm, –5.13%, p = 0.041; 0.35 mm, –4.81%, p = 0.045; 0.4 mm, –4.59%, p = 0.035). We also observed significant inverse relationships between ambient CO levels and FVC (–5.78%, p = 0.015).Conclusions: Our results suggest that short-term exposure to fine particles and CO while cycling in traffic contributes to a reduction in FVC of cyclists.


2021 ◽  
Vol 13 (2) ◽  
pp. 599
Author(s):  
Diana Mariana Cocârţă ◽  
Mariana Prodana ◽  
Ioana Demetrescu ◽  
Patricia Elena Maria Lungu ◽  
Andreea Cristiana Didilescu

(1) Background: Indoor air pollution can affect the well-being and health of humans. Sources of indoor pollution with particulate matter (PM) are outdoor particles and indoor causes, such as construction materials, the use of cleaning products, air fresheners, heating, cooking, and smoking activities. In 2017, according to the Global Burden of Disease study, 1.6 million people died prematurely because of indoor air pollution. The health effects of outdoor exposure to PM have been the subject of both research and regulatory action, and indoor exposure to fine particles is gaining more and more attention as a potential source of adverse health effects. Moreover, in critical situations such as the current pandemic crisis, to protect the health of the population, patients, and staff in all areas of society (particularly in indoor environments, where there are vulnerable groups, such as people who have pre-existing lung conditions, patients, elderly people, and healthcare professionals such as dental practitioners), there is an urgent need to improve long- and short-term health. Exposure to aerosols and splatter contaminated with bacteria, viruses, and blood produced during dental procedures performed on patients rarely leads to the transmission of infectious agents between patients and dental health care staff if infection prevention procedures are strictly followed. On the other hand, in the current circumstances of the pandemic crisis, dental practitioners could have an occupational risk of acquiring coronavirus disease as they may treat asymptomatic and minimally symptomatic patients. Consequently, an increased risk of SARS-CoV-2 infection could occur in dental offices, both for staff that provide dental healthcare and for other patients, considering that many dental procedures produce droplets and dental aerosols, which carry an infectious virus such as SARS-CoV-2. (2) Types of studies reviewed and applied methodology: The current work provides a critical review and evaluation, as well as perspectives concerning previous studies on health risks of indoor exposure to PM in dental offices. The authors reviewed representative dental medicine literature focused on sources of indoor PM10 and PM2.5 (particles for which the aerodynamic diameter size is respectively less than 10 and 2.5 μm) in indoor spaces (paying specific attention to dental offices) and their characteristics and toxicological effects in indoor microenvironments. The authors also reviewed representative studies on relations between the indoor air quality and harmful effects, as well as studies on possible indoor viral infections acquired through airborne and droplet transmission. The method employed for the research illustrated in the current paper involved a desk study of documents and records relating to occupational health problems among dental health care providers. In this way, it obtained background information on both the main potential hazards in dentistry and infection risks from aerosol transmission within dental offices. Reviewing this kind of information, especially that relating to bioaerosols, is critical for minimizing the risk to dental staff and patients, particularly when new recommendations for COVID-19 risk reduction for the dental health professional community and patients attending dental clinics are strongly needed. (3) Results: The investigated studies and reports obtained from the medical literature showed that, even if there are a wide number of studies on indoor human exposure to fine particles and health effects, more deep research and specific studies on indoor air pollution with fine particles and implications for workers’ health in dental offices are needed. As dental practices are at a higher risk for hazardous indoor air because of exposure to chemicals and microbes, the occupational exposures and diseases must be addressed, with special attention being paid to the dental staff. The literature also documents that exposure to fine particles in dental offices can be minimized by putting prevention into practice (personal protection barriers such as masks, gloves, and safety eyeglasses) and also keeping indoor air clean (e.g., high-volume evacuation, the use of an air-room-cleaning system with high-efficiency particulate filters, and regularly maintaining the air-conditioning and ventilation systems). These kinds of considerations are extremely important as the impact of indoor pollution on human health is no longer an individual issue, with its connections representing a future part of sustainability which is currently being redefined. These kinds of considerations are extremely important, and the authors believe that a better situation in dentistry needs to be developed, with researchers in materials and dental health trying to understand and explain the impact of indoor pollution on human health.


2019 ◽  
Vol 8 (3) ◽  
pp. 7559-7566

Clean air is considered the fountain of life that enables humankind to sustain healthy lives while supporting unique ecosystems of the Earth. The United Nations, being the supreme policymaking body in the world, has duly stated that “clean air is a human right”. The underlying reason for this derives itself from gruesome statistics asserting that between 6 and 7 million people die prematurely each year due to air pollution, and around 90% of the global pollution breathes polluted air. Being the existential threat pollution is, most of it is caused by burning of fossil fuels that contributes not only to climate change but also deteriorating human health. A significant portion of air pollution is constituted by indoor air pollution through carbon dioxide (CO2 ) emissions, which has been a major cause of concern for India. It has been observed that 9 out of 10 people in India breathe air that breached safe limits and 7 million people die each year due to household air pollution through exposure to fine particles causing cardiovascular diseases, lung cancer and other pulmonary diseases. Women form a significant portion of such sufferers, whereby, a WHO report has found that mothers were more likely to deliver underweight babies in households with indoor air pollution from solid fuels. Associated with this, is the issue of increasing household expenditure on health vis-à-vis women. This paper examines the impact of such indoor pollution on women vis-à-vis health costs as part of their household expenditure allocations. Observations emphasise the need to reverse such trend of increasing indoor air pollution while moving on to a phase of employing greener fuels and technologies among households, and associated sensitive policymaking. This is expected to not only increase the standard of health among women of different strata but also will propel the productivity of human capital on a per capita basis.


2020 ◽  
Author(s):  
Guojun He ◽  
Yuhang Pan ◽  
Takanao Tanaka

There is increasing concern that ambient air pollution could exacerbate COVID-19 transmission. However, estimating the relationship is challenging because it requires one to account for epidemiological characteristics, to isolate the impact of air pollution from potential confounders, and to capture the dynamic impact. We propose a new econometric framework to address these challenges: we rely on the epidemiological Susceptible-Infectious-Recovered-Deceased (SIRD) model to construct the outcome of interest, the Instrument Variable (IV) model to estimate the causal relationship, and the Flexible-Distributed-Lag (FDL) model to understand the dynamics. Using data covering all prefectural Chinese cities, we find that a 10-point (14.3%) increase in the Air Quality Index would lead to a 2.80 percentage point increase in the daily COVID-19 growth rate with 2 to 13 days of delay (0.14 ∼ 0.22 increase in the reproduction number: R0). These results imply that improving air quality can be a powerful tool to contain the spread of COVID-19.


2021 ◽  
Author(s):  
Fang Xu ◽  
Xiao-Ling Luo ◽  
Di Zhou

Abstract Using data from the China General Social Survey and data on air pollution, this study explores the impact and the critical path of air pollution on residents’ happiness in China and evaluates whether environmental regulations can alleviate these effects. A probit model is used to analyze the impact of air pollution on residents’ happiness, and wind speed is taken as the instrumental variable of air pollution to overcome endogeneity. A stepwise regression is used to test the critical path of air pollution on residents’ happiness. Finally, the effects of environmental regulations are considered by adding an interaction term between environmental regulation and air pollution. The following conclusions are drawn. First, air pollution can significantly impair residents’ happiness, especially those who have children, are younger, are in poor health, have a lower education level, have lower income, and live in a rural area. Second, there are two critical paths through which air pollution impairs residents’ happiness: mental health level and the frequency of leisure activities. Finally, command-and-control, market-based, and voluntary environmental regulations can all effectively alleviate the impact of air pollution on residents’ happiness.


2021 ◽  
Vol 100 (7) ◽  
pp. 663-667
Author(s):  
Dmitry V. Surzhikov ◽  
Vera V. Kislitsyna ◽  
Varvara A. Shtaiger ◽  
Roman A. Golikov

Introduction. The issue of air pollution is relevant in cities where the majority of the population lives and a large number of industrial enterprises are concentrated in relatively small areas. Currently, the federal project “Clean Air” is being implemented in 12 industrial centres of Russia within the framework of the national project “Ecology”. The purpose of the work was to justify using statistical and mathematical methods for assessing the impact of atmospheric pollution on the health of the population in the city of Novokuznetsk, Kemerovo region. Materials and methods. The following methods were used: assessment and management of public health risk, statistical analysis methods: factor analysis, multiple regression analysis, discriminant analysis. Results. Statistical indices and public health risk parameters can be used to assess the impact. Examples of the effect of complex pollution indices (the main components of pollution, the integral indicator P) and the concentrations of individual impurities in the air basin (suspended substances, ozone) were given. The carcinogenic risk to the population of Novokuznetsk, calculated from the calculated concentrations of atmospheric pollutants, was found to exceed the acceptable risk threshold. The specific weight of carcinogens in the formation of the risk to other oncological incidence was determined. An assessment of the risk from the emissions of a coal-processing plant located near residential areas of the city was carried out. The values of the hazard indices showed an excess of the acceptable non-carcinogenic risk only from the emissions of the coal processing plant, taking into account the background level of air pollution in the air basin. Conclusion. In Novokuznetsk, it is proposed to use the method of ranking atmospheric protection measures in terms of the unit cost of risk reduction in health risk management. To manage the risk, it is proposed to calculate the population indices of aerogenic hazard or the probabilistic parameters of the individual threat associated with air pollution. It is noted that a 20-22% reduction in pollutant emissions for Novokuznetsk may not be enough. The reasonable measures for the further study of the aerogenic impact on the population of the city are presented.


Sign in / Sign up

Export Citation Format

Share Document