scholarly journals A New Design of a CPW-Fed Dual-Band Monopole Antenna for RFID Readers

Author(s):  
Ahmed El Hamraoui ◽  
EL Hassane Abdelmounim ◽  
Jamal Zbitou ◽  
Hamid Bennis ◽  
Mohamed Latrach

<p>This paper comes with a new dual-band planar monopole antenna fed by Coplanar Waveguide (CPW) line designed for RFID readers and it operates at 2.45 GHz, 5.80 GHz. This antenna is designed with reasonable gain, low profile and low cost production. The designed antenna based on theoretical equations is simulated and validated by using ADS from Agilent technologies and CST Microwave Studio electromagnetic solvers. A parametric study of the proposed antenna has been carried out by optimizing some critical parameters. The antenna has a total area of 35×38 mm2 and mounted on an FR4 substrate with dielectric permittivity constant 4.4 and thickness of 1.6 mm and loss tangent 0.025. The comparison between simulation and measurement results permits to validate the final achieved antenna structure in the desired RFID frequencies bands. Details of the proposed antenna design and both simulated and experimental results are described and discussed</p>

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2715
Author(s):  
Ming-An Chung ◽  
Chih-Wei Yang

The article mainly presents that a simple antenna structure with only two branches can provide the characteristics of dual-band and wide bandwidths. The recommended antenna design is composed of a clockwise spiral shape, and the design has a gradual impedance change. Thus, this antenna is ideal for applications also recommended in these wireless standards, including 5G, B5G, 4G, V2X, ISM band of WLAN, Bluetooth, WiFI 6 band, WiMAX, and Sirius/XM Radio for in-vehicle infotainment systems. The proposed antenna with a dimension of 10 × 5 mm is simple and easy to make and has a lot of copy production. The operating frequency is covered with a dual-band from 2000 to 2742 MHz and from 4062 to beyond 8000 MHz and, it is also demonstrated that the measured performance results of return loss, radiation, and gain are in good agreement with simulations. The radiation efficiency can reach 91% and 93% at the lower and higher bands. Moreover, the antenna gain can achieve 2.7 and 6.75 dBi at the lower and higher bands, respectively. This antenna design has a low profile, low cost, and small size features that may be implemented in autonomous vehicles and mobile IoT communication system devices.


2012 ◽  
Vol 241-244 ◽  
pp. 2555-2558
Author(s):  
Qi Wang

A printed ring-shaped monopole antenna fed by coplanar waveguide for use in the dual-band wireless communication system has been presented and investigated. By adding some branch strips inside the ring and changing its size, as well as the further optimization, the proposed antenna could work effectively within the scope of 2.4-2.484GHz and 5.15-5.825GHz frequency band. Practical antenna structure is fabricated. The details of the antenna design and both the theoretical and experimental results are discussed.


Author(s):  
Cem Baytore ◽  
Mehmet Can Ozgonul ◽  
Merih Palandoken ◽  
Basak Ozbakis ◽  
Adnan Kaya

A circular monopole antenna with coplanar waveguide feeding is designed for wideband applications. Different electromagnetic bandgap structures are placed beneath the antenna ground plane to improve the gain and the radiation efficiency. The depicted model occupies the dimension of 50X50X1.60 mm on FR4 substrate with dielectric constant of 4.3. Aerial operating in the dual band of 1.5-3.6 GHz (GPS, LTE, Bluetooth and Wi-Fi applications) and 4.8-15 GHz (WLAN, X-Band and Satellite communication applications) with bandwidth of 2.10 and 10.20 GHz respectively. The final novel antenna design provides good correlation with simulation results.


Author(s):  
Ahmed Elhamraoui ◽  
El Hassan Abdelmounim ◽  
Jamal Zbitou ◽  
Ahmed Errkik ◽  
Hamid Bennis ◽  
...  

<p>This paper presents a study of a new dual-band monopole antenna fed by a Coplanar Waveguide (CPW) line suitable for Radio Frequency Identification (RFID) applications especially designed for RFID readers and covering free ISM bands of 2.45GHz and 5.8GHz. The proposed antenna benefits from the advantages of the CPW line to simplify the structure of the antenna into a single metallic level, by consequent making it easier for integration with microwave integrated circuits. The simulation of the antenna was carried out using ADS from Agilent technologies and CST Microwave Studio electromagnetic solvers. A good impedance bandwidth of 500MHz is achieved in measurement (from 2.1GHz to 2.6GHz for the lower band), while the upper band covers 800MHz (from 5.2GHz to 6GHz). Details of the proposed antenna design and both simulated and experimental results are described and discussed.<strong><em></em></strong></p>


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Qasim Awais ◽  
Hassan Tariq Chattha ◽  
Mohsin Jamil ◽  
Yang Jin ◽  
Farooq Ahmad Tahir ◽  
...  

This paper presents a dual-band coplanar waveguide (CPW) fed printed antenna with rectangular shape design blocks having ultrawideband characteristics, proposed and implemented on an FR4 substrate. The size of the proposed antenna is just 25 mm × 35 mm. A novel rounded corners technique is used to enhance not only the impedance bandwidth but also the gain of the antenna. The proposed antenna design covers two ultrawide bands which include 1.1–2.7 GHz and 3.15–3.65 GHz, thus covering 2.4 GHz Bluetooth/Wi-Fi band and most of the bands of 3G, 4G, and a future expected 5G band, that is, 3.4–3.6 GHz. Being a very low-profile antenna makes it very suitable for the future 5G Internet of Things (IoT) portable applications. A step-by-step design process is carried out to obtain an optimized design for good impedance matching in the two bands. The current densities and the reflection coefficients at different stages of the design process are plotted and discussed to get a good insight into the final proposed antenna design. This antenna exhibits stable radiation patterns on both planes, having low cross polarization and low back lobes with a maximum gain of 8.9 dB. The measurements are found to be in good accordance with the simulated results.


2001 ◽  
Vol 54 (3) ◽  
pp. 337-344
Author(s):  
Professor Richard Langley

This paper describes three different antenna systems for mobile vehicle applications. The antennas are either patches or derivatives in all cases. The first is a dual-band telephone antenna with a low profile and wide bandwidth. Operating at 900 MHz and 1800 MHz, with a VSWR of better than 1·7, it is a hybrid construction combining a monopole with a top-loading patch shorted to the ground-plane. Extra-shorted pins provide the upper frequency band coverage. It provides monopole radiation characteristics and can be hidden under a plastic panel or mounted on the vehicle roof. The second is a microstrip patch antenna integrated into a laminated glass windscreen for a vehicle. It is fed using a coplanar waveguide feed printed on the innermost layer of the glass, avoiding the need for a contacting feed within the laminate. The patch and ground plane are meshed for manufacturing in the glass to avoid distorting the heat profile when the glass is shaped and laminated. The patch is easily fed from inside the vehicle and is potentially a very low cost design. The final antenna discussed is a dual-band patch antenna specifically designed for the Globalstar satellite telephone system at 1·6 GHz and 2·45 GHz. It also covers the Iridium band at 1·6 GHz. A single circularly polarised patch is used. Dual-band operation results from truncating the corners of the square patch and judiciously placed slots to achieve a band spacing of 1·5.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 651-655 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang

Abstract A novel design of a coplanar waveguide (CPW) feed antenna array with circular polarization (CP) and a high front-to-back ratio is described. The proposed CP array is achieved by using a compact CPW–slotline transition network etched in the ground plane. The measured results show that this kind of feeding method can improve the impedance bandwidth, as well as the axial ratio bandwidth of the CP antenna array and provide adequate gain. The proposed array can achieve a 6.08% impedance bandwidth and a 4.10% CP bandwidth. Details of the antenna design and experimental results are presented and discussed.


2019 ◽  
Vol 11 (2) ◽  
pp. 31 ◽  
Author(s):  
Naser Ojaroudi Parchin ◽  
Haleh Jahanbakhsh Basherlou ◽  
Raed Abd-Alhameed ◽  
James Noras

Over the past decade, radio-frequency identification (RFID) technology has attracted significant attention and become very popular in different applications, such as identification, management, and monitoring. In this study, a dual-band microstrip-fed monopole antenna has been introduced for RFID applications. The antenna is designed to work at the frequency ranges of 2.2–2.6 GHz and 5.3–6.8 GHz, covering 2.4/5.8 GHz RFID operation bands. The antenna structure is like a modified F-shaped radiator. It is printed on an FR-4 dielectric with an overall size of 38 × 45 × 1.6 mm3. Fundamental characteristics of the antenna in terms of return loss, Smith Chart, phase, radiation pattern, and antenna gain are investigated and good results are obtained. Simulations have been carried out using computer simulation technology (CST) software. A prototype of the antenna was fabricated and its characteristics were measured. The measured results show good agreement with simulations. The structure of the antenna is planar, simple to design and fabricate, easy to integrate with RF circuit, and suitable for use in RFID systems.


Sign in / Sign up

Export Citation Format

Share Document