scholarly journals A Survey of Machine Learning Techniques for Self-tuning Hadoop Performance

Author(s):  
Md. Armanur Rahman ◽  
J. Hossen ◽  
Venkataseshaiah C ◽  
CK Ho ◽  
Tan Kim Geok ◽  
...  

The Apache Hadoop framework is an open source implementation of MapReduce for processing and storing big data. However, to get the best performance from this is a big challenge because of its large number configuration parameters. In this paper, the concept of critical issues of Hadoop system, big data and machine learning have been highlighted and an analysis of some machine learning techniques applied so far, for improving the Hadoop performance is presented. Then, a promising machine learning technique using deep learning algorithm is proposed for Hadoop system performance improvement.

2021 ◽  
Vol 119 ◽  
pp. 44-53
Author(s):  
Danilo Bertoni ◽  
Giacomo Aletti ◽  
Daniele Cavicchioli ◽  
Alessandra Micheletti ◽  
Roberto Pretolani

Author(s):  
Bruce Mellado ◽  
Jianhong Wu ◽  
Jude Dzevela Kong ◽  
Nicola Luigi Bragazzi ◽  
Ali Asgary ◽  
...  

COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Tahani Daghistani ◽  
Huda AlGhamdi ◽  
Riyad Alshammari ◽  
Raed H. AlHazme

AbstractOutpatients who fail to attend their appointments have a negative impact on the healthcare outcome. Thus, healthcare organizations facing new opportunities, one of them is to improve the quality of healthcare. The main challenges is predictive analysis using techniques capable of handle the huge data generated. We propose a big data framework for identifying subject outpatients’ no-show via feature engineering and machine learning (MLlib) in the Spark platform. This study evaluates the performance of five machine learning techniques, using the (2,011,813‬) outpatients’ visits data. Conducting several experiments and using different validation methods, the Gradient Boosting (GB) performed best, resulting in an increase of accuracy and ROC to 79% and 81%, respectively. In addition, we showed that exploring and evaluating the performance of the machine learning models using various evaluation methods is critical as the accuracy of prediction can significantly differ. The aim of this paper is exploring factors that affect no-show rate and can be used to formulate predictions using big data machine learning techniques.


2021 ◽  
Author(s):  
Praveeen Anandhanathan ◽  
Priyanka Gopalan

Abstract Coronavirus disease (COVID-19) is spreading across the world. Since at first it has appeared in Wuhan, China in December 2019, it has become a serious issue across the globe. There are no accurate resources to predict and find the disease. So, by knowing the past patients’ records, it could guide the clinicians to fight against the pandemic. Therefore, for the prediction of healthiness from symptoms Machine learning techniques can be implemented. From this we are going to analyse only the symptoms which occurs in every patient. These predictions can help clinicians in the easier manner to cure the patients. Already for prediction of many of the diseases, techniques like SVM (Support vector Machine), Fuzzy k-Means Clustering, Decision Tree algorithm, Random Forest Method, ANN (Artificial Neural Network), KNN (k-Nearest Neighbour), Naïve Bayes, Linear Regression model are used. As we haven’t faced this disease before, we can’t say which technique will give the maximum accuracy. So, we are going to provide an efficient result by comparing all the such algorithms in RStudio.


2020 ◽  
Vol 7 (10) ◽  
pp. 380-389
Author(s):  
Asogwa D.C ◽  
Anigbogu S.O ◽  
Anigbogu G.N ◽  
Efozia F.N

Author's age prediction is the task of determining the author's age by studying the texts written by them. The prediction of author’s age can be enlightening about the different trends, opinions social and political views of an age group. Marketers always use this to encourage a product or a service to an age group following their conveyed interests and opinions. Methodologies in natural language processing have made it possible to predict author’s age from text by examining the variation of linguistic characteristics. Also, many machine learning algorithms have been used in author’s age prediction. However, in social networks, computational linguists are challenged with numerous issues just as machine learning techniques are performance driven with its own challenges in realistic scenarios. This work developed a model that can predict author's age from text with a machine learning algorithm (Naïve Bayes) using three types of features namely, content based, style based and topic based. The trained model gave a prediction accuracy of 80%.


Agriculture data is a main source of country’s economic growth. It is important to provide agriculture related information to all the people who are involved in agriculture activities as and when required. This meaningful information is used by people who supply services to agriculture domain and to take some correct decision related to agriculture to apply for their field. The solutions to this problem are given by the efficient interaction of computer with human. Chatbot system provides ability to extract the exact answer to the queries posed by farmers. The proposed system is called as Agriculture Chatbot system or even it is called as Question-Answering system for agriculture domain, where farmer is asking the agriculture related question which fetches the precise answers for the asked questions by farmers in natural language and processes the query using RNN (Recurrent Neural Network) deep learning algorithm to extract correct answer.


Sign in / Sign up

Export Citation Format

Share Document