scholarly journals Displacement mechanical amplifiers designed on poly-silicon

Author(s):  
Ramon Cabello-Ruiz ◽  
Margarita Tecpoyotl-Torres ◽  
Alfonso Torres-Jacome ◽  
Gerardo Vera-Dimas ◽  
Svetlana Koshevaya ◽  
...  

Using Poly-Silicon, the implementation of novel Displacement-amplifying Compliant Mechanisms (DaCM), in two geometries of accelerometers, allows for remarkable improvements in their operation frequency and displacement sensitivity, with different proportions. Similar DaCM´s geometries were previously implemented by us with Silicon. In all mentioned cases, the geometries of DaCM´s are adjusted in order to use them with Conventional Capacitive Accelerometer (CCA) and Capacitive Accelerometer with Extended Beams (CAEB), which operate in-plane mode, (y-axis). It should be noted that CAEB shows improvements (95.33%) in displacement sensitivity compared to ACC. Simulations results, carried out using Ansys Workbench software, validate the system’s performance designed with Poly-Silicon. Finally, a comparison with the similar systems, previously designed with Silicon, is also carried out.

Author(s):  
Margarita Tecpoyotl-Torres ◽  
Ramon Cabello-Ruiz ◽  
Pedro Vargas-Chable ◽  
Jose Gerardo Vera-Dimas ◽  
Alejandra Ocampo-Diaz

<span>Accelerometers are widely used in several mechanisms of high sensitivity. They are employed for example in tilt-control in spacecraft, inertial navigation, oil exploration, seismic monitoring, etc. In order to improve the sensitivity of the measurements, implementation of Displacement-amplifying Compliant Mechanisms (DaCMs) in a capacitive accelerometer have been reported in the literature. In this paper, a system composed of two elements; capacitive accelerometer with extended beams (CAEB) and a DaCM geometry, of single and souble layer, are analysed. Three materials were considered, in the case, for the second layer. The DaCM implementation improves the operation frequency and displacement sensitivity, under different proportions, at the same time. Furthermore, three sweeps were performed: a range of thickness from 25 µm up to 30 µm (to determine the appropriate silicon mass value, using SOI technology), a range of second layer thickness (to choose the more appropriate material and its thickness) and a range of gravity values (to determine the maximum normal stress in the beams, which defines the superior value of the g operation range). The in-plane mode (y-axis) was considered in all analysed cases. This characterization was developed using the Finite Element Method. Structural and modal analysis responses were under study.</span>


Author(s):  
Ramon Cabello-Ruiz ◽  
Margarita Tecpoyotl-Torres ◽  
Alfonso Torres-Jacome ◽  
Volodymyr Grimalsky ◽  
Jose Gerardo Vera-Dimas ◽  
...  

The micro-accelerometers are devices used to measure acceleration. They are implemented in applications such as tilt-control in spacecraft, inertial navigation, oil exploration, etc. These applications require high operating frequency and displacement sensitivity. But getting both high parameter values at the same time is difficult, because there are physical relationships, for each one, where the mass is involved. When the mass is reduced, the operating frequency is high, but the displacement sensitivity decreases and vice versa. The implementation of Displacement-amplifying Compliant Mechanism (DaCM) supports to this dependence decreases. In this paper the displacement sensitivity and operation frequency of a Conventional Capacitive Accelerometer are shown (CCA). A Capacitive Accelerometer with Extended Beams (CAEB) is also presented, which improves displacement sensitivity compared with CCA, and finally the implementation of DACM´s in the aforementioned devices was also carried out. All analyzed cases were developed considering the in-plane mode. The Matlab code used to calculate displacement sensitivity and operating frequency relationship is given in Appendix A.


Author(s):  
Girish Krishnan ◽  
G. K. Ananthasuresh

Displacement-amplifying compliant mechanisms (DaCMs) reported in literature are mostly used for actuator applications. This paper considers them for sensor applications that rely on displacement measurement, and evaluates them objectively. The main goal is to increase the sensitivity under constraints imposed by several secondary requirements and practical constraints. A spring-mass-lever model that effectively captures the addition of a DaCM to a sensor is used in comparing eight DaCMs. We observe that they significantly differ in performance criteria such as geometric advantage, stiffness, natural frequency, mode amplification, factor of safety against failure, cross-axis stiffness, etc., but none excel in all. Thus, a combined figure of merit is proposed using which the most suitable DaCM could be selected for a sensor application. A case-study of a micro machined capacitive accelerometer and another case-study of a vision-based force sensor are included to illustrate the general evaluation and selection procedure of DaCMs with specific applications. Some other insights gained with the analysis presented here were the optimum size-scale for a DaCM, the effect on its natural frequency, limits on its stiffness, and working range of the sensor.


Author(s):  
Behzad Majdi ◽  
Arash Reza

The present study aims at providing a topology optimization of multi-material compliant mechanisms using solid isotropic material with penalization (SIMP) approach. In this respect, three multi-material gripper, invertor, and cruncher compliant mechanisms are considered that consist of three solid phases, including polyamide, polyethylene terephthalate, and polypropylene. The alternating active-phase algorithm is employed to find the distribution of the materials in the mechanism. In this case, the multiphase topology optimization problem is divided into a series of binary phase topology optimization sub-problems to be solved partially in a sequential manner. Finally, the maximum displacement of the multi-material compliant mechanisms was validated against the results obtained from the finite element simulations by the ANSYS Workbench software, and a close agreement between the results was observed. The results reveal the capability of the SIMP method to accurately conduct the topology optimization of multi-material compliant mechanisms.


Actuators ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 28 ◽  
Author(s):  
Pedro Vargas-Chable ◽  
Margarita Tecpoyotl-Torres ◽  
Ramon Cabello-Ruiz ◽  
Jose Rodriguez-Ramirez ◽  
Rafael Vargas-Bernal

In this paper, a modified U-shaped micro-actuator with a compliant mechanism is proposed. It was analyzed with a uniform and modified thin arm, as well as a similar variation in the corresponding flexure, in order to observe the impact of the compliant lumped mechanism. The use of these compliant mechanisms implies an increment in the deformation and a reduction in the equivalent stress of 25% and 52.25%, respectively. This characterization was developed using the Finite Element Method (FEM) in ANSYS Workbench. The design, analysis and simulation were developed with Polysilicon. In this study, the following performance parameters were also analyzed: force and temperature distribution. This device is supplied with voltage from 0 V up to 3 V, at room temperature. The modified U-shaped actuator was applied in both arms of a microgripper, and to evaluate its electrothermal performance, a static structural analysis has been carried out in Ansys Workbench. The microgripper has an increment in deformation of 22.33%, an equivalent stress reduction of 50%, and a decrease in operation frequency of 10.8%. The force between its jaws is of 367 µN. This low level of force could be useful when sensitive particles are manipulated.


2019 ◽  
Vol 29 (07) ◽  
pp. 2050107
Author(s):  
Sumit Kumar Jindal ◽  
Srishti Priya ◽  
S. Kshipra Prasadh

This work deals in specifying the design considerations while constructing a Micro Electro Mechanical Systems (MEMS) optical accelerometer working on capacitive sensing technique. Sensitivity is one of the most demanded characteristics of any sensor. The sensor considered is a MEMS capacitive accelerometer in which both displacement and capacitance are the primary sensing characteristics. This differential capacitive accelerometer causes change in displacement due to applied acceleration and further produces change in capacitance. So, the main focus in this work is to improve or select the suitable diaphragm dimensions of the differential capacitor in order to get optimal capacitive and displacement sensitivity. This is done for an Optical MEMS (MOEMS) based sensor where slight change has a large-scale impact. The electrical signal is converted to optical by adding an Optical Interferometer. Mach–Zehnder Interferometer (MZI) is used to carry out the intensity modulation which also gives protection in inflammable surroundings. This makes the system suitable for working in high temperature regions.


2008 ◽  
Vol 130 (10) ◽  
Author(s):  
Girish Krishnan ◽  
G. K. Ananthasuresh

Displacement-amplifying compliant mechanisms (DaCMs) reported in literature are widely used for actuator applications. This paper considers them for sensor applications that rely on displacement measurement, and proposes methods to evaluate and design such mechanisms. The motivation of this work is to increase the sensitivity of a micromachined capacitive accelerometer and a minute mechanical force sensor using DaCMs. A lumped spring-mass-lever (SML) model, which effectively captures the effects of appending a DaCM to a sensor, is introduced. This model is a generalization of the ubiquitously used spring-mass model for the case of an elastic body that has two points of interest—an input and an output. The SML model is shown to be useful in not only evaluating the suitability of an existing DaCM for a new application but also for designing a new DaCM. With the help of this model, we compare a number of DaCMs from literature and identify those that nearly meet the primary problem specifications. To obtain improved designs that also meet the secondary specifications, topology and size-optimization methods are used. For the two applications considered in this paper, we obtain a few new DaCM topologies, which are added to the catalog of DaCMs for future use. The spring-mass-lever model, the evaluation and design methods, and the catalog of DaCMs presented here are useful in other sensor and actuator applications.


Author(s):  
H. Yen ◽  
E. P. Kvam ◽  
R. Bashir ◽  
S. Venkatesan ◽  
G. W. Neudeck

Polycrystalline silicon, when highly doped, is commonly used in microelectronics applications such as gates and interconnects. The packing density of integrated circuits can be enhanced by fabricating multilevel polycrystalline silicon films separated by insulating SiO2 layers. It has been found that device performance and electrical properties are strongly affected by the interface morphology between polycrystalline silicon and SiO2. As a thermal oxide layer is grown, the poly silicon is consumed, and there is a volume expansion of the oxide relative to the atomic silicon. Roughness at the poly silicon/thermal oxide interface can be severely deleterious due to stresses induced by the volume change during oxidation. Further, grain orientations and grain boundaries may alter oxidation kinetics, which will also affect roughness, and thus stress.Three groups of polycrystalline silicon films were deposited by LPCVD after growing thermal oxide on p-type wafers. The films were doped with phosphorus or arsenic by three different methods.


2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


2013 ◽  
Vol 1 (1) ◽  
pp. 42-25
Author(s):  
Nabil N. Swadi

This paper is concerned with the study of the kinematic and kinetic analysis of a slider crank linkage using D'Alembert's principle. The links of the considered mechanism are assumed to be rigid. The analytical solution to observe the motion (displacement, velocity, and acceleration), reactions at each joint, torque required to drive the mechanism and the shaking force have been computed by a computer program written in MATLAB language over one complete revolution of the crank shaft. The results are compared with a finite element simulation carried out by using ANSYS Workbench software and are found to be in good agreement. A graphical method (relative velocity and acceleration method) has been also applied for two phases of the crank shaft (q2 = 10° and 130°). The results obtained from this method (graphical) are compared with those obtained from analytical and numerical method and are found very acceptable. To make the analysis linear the friction force on the joints and sliding interface are neglected. All results, in this work, are obtained when the crank shaft turns at a uniform angular velocity (w2 = 188.5 rad/s) and time dependent gas pressure force on the slider crown.


Sign in / Sign up

Export Citation Format

Share Document