scholarly journals Celebrity Face Recognition using Deep Learning

Author(s):  
Nur Ateqah Binti Mat Kasim ◽  
Nur Hidayah Binti Abd Rahman ◽  
Zaidah Ibrahim ◽  
Nur Nabilah Abu Mangshor

Face recognition is one of the well studied problems by researchers in computer visions.  Among the challenges of this task are the occurrence of different facial expressions like happy or sad, and different views of the images such as front and side views.  This paper experiments a publicly available dataset that consists of 200,000 images of celebrity faces. Deep Learning technique is gaining its popularity in computer vision and this paper applies this technique for face recognition problem.  One of the techniques under deep learning is Convolutional Neural Network (CNN).  There is also pre-trained CNN models that are AlexNet and GoogLeNet, which produce excellent accuracy results.  The experimental results indicate that AlexNet is better than basic CNN and GoogLeNet for face recognition.

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Ahmed Jawad A. AlBdairi ◽  
Zhu Xiao ◽  
Mohammed Alghaili

The interest in face recognition studies has grown rapidly in the last decade. One of the most important problems in face recognition is the identification of ethnics of people. In this study, a new deep learning convolutional neural network is designed to create a new model that can recognize the ethnics of people through their facial features. The new dataset for ethnics of people consists of 3141 images collected from three different nationalities. To the best of our knowledge, this is the first image dataset collected for the ethnics of people and that dataset will be available for the research community. The new model was compared with two state-of-the-art models, VGG and Inception V3, and the validation accuracy was calculated for each convolutional neural network. The generated models have been tested through several images of people, and the results show that the best performance was achieved by our model with a verification accuracy of 96.9%.


2020 ◽  
Vol 32 ◽  
pp. 03011
Author(s):  
Divya Kapil ◽  
Aishwarya Kamtam ◽  
Akhil Kedare ◽  
Smita Bharne

Surveillance systems are used for the monitoring the activities directly or indirectly. Most of the surveillance system uses the face recognition techniques to monitor the activities. This system builds the automated contemporary biometric surveillance system based on deep learning. The application of the system can be used in various ways. The face prints of the persons will be stored inside the database with relevant statistics and does the face recognition. When any unknown face is recognized then alarm will ring so one can alert the security systems and in addition actions will be taken. The system learns changes while detecting faces automatically using deep learning and gain correct accuracy in face recognition. A deep learning method including Convolutional Neural Network (CNN) is having great significance in the area of image processing. This system can be applicable to monitor the activities for the housing society premises.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin-Woong Lee ◽  
Woon Bae Park ◽  
Jin Hee Lee ◽  
Satendra Pal Singh ◽  
Kee-Sun Sohn

AbstractHere we report a facile, prompt protocol based on deep-learning techniques to sort out intricate phase identification and quantification problems in complex multiphase inorganic compounds. We simulate plausible powder X-ray diffraction (XRD) patterns for 170 inorganic compounds in the Sr-Li-Al-O quaternary compositional pool, wherein promising LED phosphors have been recently discovered. Finally, 1,785,405 synthetic XRD patterns are prepared by combinatorically mixing the simulated powder XRD patterns of 170 inorganic compounds. Convolutional neural network (CNN) models are built and eventually trained using this large prepared dataset. The fully trained CNN model promptly and accurately identifies the constituent phases in complex multiphase inorganic compounds. Although the CNN is trained using the simulated XRD data, a test with real experimental XRD data returns an accuracy of nearly 100% for phase identification and 86% for three-step-phase-fraction quantification.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1678
Author(s):  
Yo-Ping Huang ◽  
Chun-Ming Su ◽  
Haobijam Basanta ◽  
Yau-Liang Tsai

The complexity of defect detection in a ceramic substrate causes interclass and intraclass imbalance problems. Identifying flaws in ceramic substrates has traditionally relied on aberrant material occurrences and characteristic quantities. However, defect substrates in ceramic are typically small and have a wide variety of defect distributions, thereby making defect detection more challenging and difficult. Thus, we propose a method for defect detection based on unsupervised learning and deep learning. First, the proposed method conducts K-means clustering for grouping instances according to their inherent complex characteristics. Second, the distribution of rarely occurring instances is balanced by using augmentation filters. Finally, a convolutional neural network is trained by using the balanced dataset. The effectiveness of the proposed method was validated by comparing the results with those of other methods. Experimental results show that the proposed method outperforms other methods.


2021 ◽  
Author(s):  
Ghassan Mohammed Halawani

The main purpose of this project is to modify a convolutional neural network for image classification, based on a deep-learning framework. A transfer learning technique is used by the MATLAB interface to Alex-Net to train and modify the parameters in the last two fully connected layers of Alex-Net with a new dataset to perform classifications of thousands of images. First, the general common architecture of most neural networks and their benefits are presented. The mathematical models and the role of each part in the neural network are explained in detail. Second, different neural networks are studied in terms of architecture, application, and the working method to highlight the strengths and weaknesses of each of neural network. The final part conducts a detailed study on one of the most powerful deep-learning networks in image classification – i.e. the convolutional neural network – and how it can be modified to suit different classification tasks by using transfer learning technique in MATLAB.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1522
Author(s):  
Alaa Thobhani ◽  
Mingsheng Gao ◽  
Ammar Hawbani ◽  
Safwan Taher Mohammed Ali ◽  
Amr Abdussalam

Websites can increase their security and prevent harmful Internet attacks by providing CAPTCHA verification for determining whether end-user is a human or a robot. Text-based CAPTCHA is the most common and designed to be easily recognized by humans and difficult to identify by machines or robots. However, with the dramatic advancements in deep learning, it becomes much easier to build convolutional neural network (CNN) models that can efficiently recognize text-based CAPTCHAs. In this study, we introduce an efficient CNN model that uses attached binary images to recognize CAPTCHAs. By making a specific number of copies of the input CAPTCHA image equal to the number of characters in that input CAPTCHA image and attaching distinct binary images to each copy, we build a new CNN model that can recognize CAPTCHAs effectively. The model has a simple structure and small storage size and does not require the segmentation of CAPTCHAs into individual characters. After training and testing the proposed CAPTCHA recognition CNN model, the achieved experimental results reveal the strength of the model in CAPTCHA character recognition.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1698 ◽  
Author(s):  
Jia Yin ◽  
Koppaka Ganesh Sai Apuroop ◽  
Yokhesh Krishnasamy Tamilselvam ◽  
Rajesh Elara Mohan ◽  
Balakrishnan Ramalingam ◽  
...  

This work presents a table cleaning and inspection method using a Human Support Robot (HSR) which can operate in a typical food court setting. The HSR is able to perform a cleanliness inspection and also clean the food litter on the table by implementing a deep learning technique and planner framework. A lightweight Deep Convolutional Neural Network (DCNN) has been proposed to recognize the food litter on top of the table. In addition, the planner framework was proposed to HSR for accomplishing the table cleaning task which generates the cleaning path according to the detection of food litter and then the cleaning action is carried out. The effectiveness of the food litter detection module is verified with the cleanliness inspection task using Toyota HSR, and its detection results are verified with standard quality metrics. The experimental results show that the food litter detection module achieves an average of 96 % detection accuracy, which is more suitable for deploying the HSR robots for performing the cleanliness inspection and also helps to select the different cleaning modes. Further, the planner part has been tested through the table cleaning tasks. The experimental results show that the planner generated the cleaning path in real time and its generated path is optimal which reduces the cleaning time by grouping based cleaning action for removing the food litters from the table.


Author(s):  
S Gopi Naik

Abstract: The plan is to establish an integrated system that can manage high-quality visual information and also detect weapons quickly and efficiently. It is obtained by integrating ARM-based computer vision and optimization algorithms with deep neural networks able to detect the presence of a threat. The whole system is connected to a Raspberry Pi module, which will capture live broadcasting and evaluate it using a deep convolutional neural network. Due to the intimate interaction between object identification and video and image analysis in real-time objects, By generating sophisticated ensembles that incorporate various low-level picture features with high-level information from object detection and scenario classifiers, their performance can quickly plateau. Deep learning models, which can learn semantic, high-level, deeper features, have been developed to overcome the issues that are present in optimization algorithms. It presents a review of deep learning based object detection frameworks that use Convolutional Neural Network layers for better understanding of object detection. The Mobile-Net SSD model behaves differently in network design, training methods, and optimization functions, among other things. The crime rate in suspicious areas has been reduced as a consequence of weapon detection. However, security is always a major concern in human life. The Raspberry Pi module, or computer vision, has been extensively used in the detection and monitoring of weapons. Due to the growing rate of human safety protection, privacy and the integration of live broadcasting systems which can detect and analyse images, suspicious areas are becoming indispensable in intelligence. This process uses a Mobile-Net SSD algorithm to achieve automatic weapons and object detection. Keywords: Computer Vision, Weapon and Object Detection, Raspberry Pi Camera, RTSP, SMTP, Mobile-Net SSD, CNN, Artificial Intelligence.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3204
Author(s):  
S. M. Nadim Uddin ◽  
Yong Ju Jung

Deep-learning-based image inpainting methods have shown significant promise in both rectangular and irregular holes. However, the inpainting of irregular holes presents numerous challenges owing to uncertainties in their shapes and locations. When depending solely on convolutional neural network (CNN) or adversarial supervision, plausible inpainting results cannot be guaranteed because irregular holes need attention-based guidance for retrieving information for content generation. In this paper, we propose two new attention mechanisms, namely a mask pruning-based global attention module and a global and local attention module to obtain global dependency information and the local similarity information among the features for refined results. The proposed method is evaluated using state-of-the-art methods, and the experimental results show that our method outperforms the existing methods in both quantitative and qualitative measures.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
HangLin Lu ◽  
XiuYun Peng

With the development of big data, in the financial market, the stock price prediction has many research directions from the perspective of big data. The classical time series prediction model cannot adapt to the high-latitude information of stock data in the era of big data. The development of deep learning provides a new idea for high-latitude stock data prediction. Four neural network models and three integrated learning models form different strategy sets, and the opening price of the next timestamp is predicted by backtracking information over the past 15 days with the characteristics of 12 indexes of the stock. The experimental results show that the prediction effect of the integration model based on the average weight policy and stacking policy is better than that of the single neural network, and the integration model based on stacking policy is expected to have the highest prediction accuracy and the minimum expected error. The accuracy was 80.2%, and the mean square error was 0.024. Compared with the single model, the accuracy is increased by 2%~7%, and the error is reduced by 0.01~0.03. The innovation of this article lies in the traditional machine learning thinking is applied to deep learning, as an individual with a variety of neural network to study, through the integration of learning strategies, fusion for the integration model, the experimental results show that the effect of the integrated model is better than that of a single model, to improve the robustness and accuracy of the model; the performance of the integrated model is more stable. For the utilization of big data resources, the integrated model of neural network has better prediction effect.


Sign in / Sign up

Export Citation Format

Share Document