scholarly journals A computer vision based image processing system for depression detection among students for counseling

Author(s):  
Sandhya Parameswaran Namboodiri ◽  
Venkataraman D

Psychological problems in college students like depression, pessimism, eccentricity, anxiety etc. are caused principally due to the neglect of continuous monitoring of students’ psychological well-being. Identification of depression at college level is desirable so that it can be controlled by giving better counseling at the starting stage itself. The disturbed mental state of a student suffering from depression would be clearly evident in the student’s facial expressions.Identification of depression in large group of college students becomes a tedious task for an individual. But advances in the Image-Processing field have led to the development of effective systems, which prove capable of detecting emotions from facial images, in a much simpler way. Thus, we need an automated system that captures facial images of students and analyze them, for effective detection of depression. In the proposed system, an attempt is being made to make use of the Image processing techniques, to study the frontal face features of college students and predict depression. This automated system will be trained with facial features of positive and negative facial emotions. To predict depression, a video of the student is captured, from which the face of the student is extracted. Then using Gabor filters, the facial features are extracted. Classification of these facial features is done using SVM classifier. The level of depression is identified by calculating the amount of negative emotions present in the entire video. Based on the level of depression, notification is send to the class advisor, department counselor or university counselor, indicating the student’s disturbed mental state. The present system works with an accuracy of 64.38%. The paper concludes with the description of an extended architecture for depression detection as future work.

IJOSTHE ◽  
2020 ◽  
pp. 1-7
Author(s):  
Ravi Kumar ◽  
Santosh Kumar Nagar ◽  
Anurag Shrivastava

Depression has become one of the most common mental illnesses in the past decade, affecting millions of patients and their families. However, the methods of diagnosing depression almost exclusively rely on questionnaire-based interviews and clinical judgments of symptom severity, which are highly dependent on doctors’ experience and makes it a labor-intensive work. This research work aims to develop an objective and convenient method to assist depression detection using facial features as well as textual features. Most of the people conceal their depression from everyone. So, an automated system is required that will pick out them who are dealing with depression. In this research, different research work focused for detecting depression are discussed and a hybrid approach is developed for detecting depression using facial as well as textual features. The main purpose of this research work is to design and propose a hybrid system of combining the effect of three effective models: Natural Language Processing, Stacked Deep Auto Encoder with Random forest (RF) classifier and fuzzy logic based on multi-feature depression detection system. According to literature several fingerprint as well as fingervein recognition system are designed that uses various techniques in order to reduce false detection rate and to enhance the performance of the system. A comparative study of different recognition technique along with their limitations is also summarized and optimum approach is proposed which may enhance the performance of the system. The result analysis shows that the developed technique significantly advantages over existing methods.


2020 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Ravi Kumar ◽  
Santosh Kumar Nagar ◽  
Anurag Shrivastava

Depression has become one of the most common mental illnesses in the past decade, affecting millions of patients and their families. However, the methods of diagnosing depression almost exclusively rely on questionnaire-based interviews and clinical judgments of symptom severity, which are highly dependent on doctors’ experience and makes it a labor-intensive work. Our study aims to develop an objective and convenient method to assist depression detection using facial features in adolescent. Most of the adolescent are totally unaware that they may be having depression. If at all they are aware of it, some adolescents conceal their depression from everyone. So, an automated system is required that will pick out the adolescents who are dealing with depression. In this paper, different research work focused for detecting depression are discussed.


2009 ◽  
Vol 8 (3) ◽  
pp. 887-897
Author(s):  
Vishal Paika ◽  
Er. Pankaj Bhambri

The face is the feature which distinguishes a person. Facial appearance is vital for human recognition. It has certain features like forehead, skin, eyes, ears, nose, cheeks, mouth, lip, teeth etc which helps us, humans, to recognize a particular face from millions of faces even after a large span of time and despite large changes in their appearance due to ageing, expression, viewing conditions and distractions such as disfigurement of face, scars, beard or hair style. A face is not merely a set of facial features but is rather but is rather something meaningful in its form.In this paper, depending on the various facial features, a system is designed to recognize them. To reveal the outline of the face, eyes, ears, nose, teeth etc different edge detection techniques have been used. These features are extracted in the term of distance between important feature points. The feature set obtained is then normalized and are feed to artificial neural networks so as to train them for reorganization of facial images.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joan Carles Puchalt ◽  
Antonio-José Sánchez-Salmerón ◽  
Eugenio Ivorra ◽  
Silvia Llopis ◽  
Roberto Martínez ◽  
...  

AbstractTraditionally Caenorhabditis elegans lifespan assays are performed by manually inspecting nematodes with a dissection microscope, which involves daily counting of live/dead worms cultured in Petri plates for 21–25 days. This manual inspection requires the screening of hundreds of worms to ensure statistical robustness, and is therefore a time-consuming approach. In recent years, various automated artificial vision systems have been reported to increase the throughput, however they usually provide less accurate results than manual assays. The main problems identified when using these vision systems are the false positives and false negatives, which occur due to culture media changes, occluded zones, dirtiness or condensation of the Petri plates. In this work, we developed and described a new C. elegans monitoring machine, SiViS, which consists of a flexible and compact platform design to analyse C. elegans cultures using the standard Petri plates seeded with E. coli. Our system uses an active vision illumination technique and different image-processing pipelines for motion detection, both previously reported, providing a fully automated image processing pipeline. In addition, this study validated both these methods and the feasibility of the SiViS machine for lifespan experiments by comparing them with manual lifespan assays. Results demonstrated that the automated system yields consistent replicates (p-value log rank test 0.699), and there are no significant differences between automated system assays and traditionally manual assays (p-value 0.637). Finally, although we have focused on the use of SiViS in longevity assays, the system configuration is flexible and can, thus, be adapted to other C. elegans studies such as toxicity, mobility and behaviour.


Author(s):  
Xuhai Xu ◽  
Prerna Chikersal ◽  
Janine M. Dutcher ◽  
Yasaman S. Sefidgar ◽  
Woosuk Seo ◽  
...  

The prevalence of mobile phones and wearable devices enables the passive capturing and modeling of human behavior at an unprecedented resolution and scale. Past research has demonstrated the capability of mobile sensing to model aspects of physical health, mental health, education, and work performance, etc. However, most of the algorithms and models proposed in previous work follow a one-size-fits-all (i.e., population modeling) approach that looks for common behaviors amongst all users, disregarding the fact that individuals can behave very differently, resulting in reduced model performance. Further, black-box models are often used that do not allow for interpretability and human behavior understanding. We present a new method to address the problems of personalized behavior classification and interpretability, and apply it to depression detection among college students. Inspired by the idea of collaborative-filtering, our method is a type of memory-based learning algorithm. It leverages the relevance of mobile-sensed behavior features among individuals to calculate personalized relevance weights, which are used to impute missing data and select features according to a specific modeling goal (e.g., whether the student has depressive symptoms) in different time epochs, i.e., times of the day and days of the week. It then compiles features from epochs using majority voting to obtain the final prediction. We apply our algorithm on a depression detection dataset collected from first-year college students with low data-missing rates and show that our method outperforms the state-of-the-art machine learning model by 5.1% in accuracy and 5.5% in F1 score. We further verify the pipeline-level generalizability of our approach by achieving similar results on a second dataset, with an average improvement of 3.4% across performance metrics. Beyond achieving better classification performance, our novel approach is further able to generate personalized interpretations of the models for each individual. These interpretations are supported by existing depression-related literature and can potentially inspire automated and personalized depression intervention design in the future.


2013 ◽  
Author(s):  
E. Luevano ◽  
E. de Posada ◽  
M. Arronte ◽  
L. Ponce ◽  
T. Flores

2021 ◽  
Vol 5 (6) ◽  
pp. 1036-1043
Author(s):  
Ardi wijaya ◽  
Puji Rahayu ◽  
Rozali Toyib

Problems in image processing to obtain the best smile are strongly influenced by the quality, background, position, and lighting, so it is very necessary to have an analysis by utilizing existing image processing algorithms to get a system that can make the best smile selection, then the Shi-Tomasi Algorithm is used. the algorithm that is commonly used to detect the corners of the smile region in facial images. The Shi-Tomasi angle calculation processes the image effectively from a target image in the edge detection ballistic test, then a corner point check is carried out on the estimation of translational parameters with a recreation test on the translational component to identify the cause of damage to the image, it is necessary to find the edge points to identify objects with remove noise in the image. The results of the test with the shi-Tomasi algorithm were used to detect a good smile from 20 samples of human facial images with each sample having 5 different smile images, with test data totaling 100 smile images, the success of the Shi-Tomasi Algorithm in detecting a good smile reached an accuracy value of 95% using the Confusion Matrix, Precision, Recall and Accuracy Methods.


Author(s):  
Srinivasan A ◽  
Sudha S

One of the main causes of blindness is diabetic retinopathy (DR) and it may affect people of any ages. In these days, both young and old ages are affected by diabetes, and the di abetes is the main cause of DR. Hence, it is necessary to have an automated system with good accuracy and less computation time to diagnose and treat DR, and the automated system can simplify the work of ophthalmologists. The objective is to present an overview of various works recently in detecting and segmenting the various lesions of DR. Papers were categorized based on the diagnosing tools and the methods used for detecting early and advanced stage lesions. The early lesions of DR are microaneurysms, hemorrhages, exudates, and cotton wool spots and in the advanced stage, new and fragile blood vessels can be grown. Results have been evaluated in terms of sensitivity, specificity, accuracy and receiver operating characteristic curve. This paper analyzed the various steps and different algorithms used recently for the detection and classification of DR lesions. A comparison of performances has been made in terms of sensitivity, specificity, area under the curve, and accuracy. Suggestions, future workand the area to be improved were also discussed.Keywords: Diabetic retinopathy, Image processing, Morphological operations, Neural network, Fuzzy logic. 


2018 ◽  
Author(s):  
Sunil Kumar ◽  
Jatinder Madan

Design for manufacturing (DFM) is an important concept that helps to incorporate manufacturability considerations at early design stage. Development of automated DFM tools has become important especially when design and manufacturing are being done by different teams often distantly located. An automated system for design for manufacturability analysis for die-cast parts has been presented in this paper. The paper discusses: (i) knowledgebase of DFM guidelines (ii) die casting feature extraction from part CAD model, and (iii) automated system for DFM analysis and model updation of the die-cast part CAD model. The capabilities of the system are demonstrated by applying it on die cast part CAD models. The results have been validated with the industrial experts. The present system works with CAD models having features such as boss, rib, hole and draft, created using feature based modeling.


Sign in / Sign up

Export Citation Format

Share Document