scholarly journals Coverage enhancements of vehicles users using mobile stations at 5G cellular networks

Author(s):  
Jaafar A. Aldhaibani ◽  
Mohanad S. Alkhazraji ◽  
Hasanain Lafta Mohammed ◽  
Abid Yaya

High mobility requirements are one of the challenges face fifth-generation wireless (5G) cellular networks by providing acceptable wireless services to users traveling at speed up to 350 km/h. This paper presents a new scenario to increase the bit rate and coverage for passengers that use the vehicles for traveling through the installation a mobile station (MS) on these vehicles to provide a high-quality service to users. Based on signal to noise ratio (SNR’s) mathematical derivation and the outage probability of the user link, the proposed system is evaluated. Numerical results indicate an enhancement for users who received signal strength (RSS) from (-72 to -55) dBm and (15 to 38) Mbps in bit rate. Moreover, their number of users increased by proposed system adoption.

2010 ◽  
Vol 2 (2) ◽  
pp. 47
Author(s):  
Alfin Hikmaturokhman ◽  
Hesti Susilawati ◽  
Tantiningrum Niken

Eb/No parameter is the measure of signal to noise ratio for a digital communication system, it is measured at the input to the receiver and is used as the basic measure of how strong the signal is, or in other words Eb/No indicates the fluctuation of received signal strength in the receiver. Eb/No is affected by several factors, such as speed of mobile station, propagation environment and bit rate. The variations of Eb/No value will affect to the number of offered channel and coverage in WCDMA. The impact of the variation of Eb/No value could be recognized in the result of the calculations. The purpose of this research is to build simulation models by using Delphi to view and analyze the influence of Eb/No of total channels and WCDMA coverage. The results from simulation analysis showed that the larger of Eb/No and bit rate used, the number of channels on offer will be smaller and the value of BS is low sensitivity, which means loads of traffic will also offer little that would cause the quality to be better systems and transmit power MS becomes more lower in order to maintain the value of Eb/No to avoid the drop call.  


2016 ◽  
Vol 78 (5-10) ◽  
Author(s):  
Nurul Nazirah Mohd Imam Ma’arof ◽  
Norsheila Fisal

Mobile Multihop Relay (MMR) network is an attractive and low-cost solution for expanding service coverage and enhancing throughput of the conventional single hop network. However, mobility of Mobile Station (MS) in MMR network might lead to performance degradation in terms of Quality of Service (QoS). Selecting an appropriate Relay Station (RS) that can support data transmission for high mobility MS to enhance QoS is one of the challenges in MMR network. The main goal of the work is to develop and enhance relay selection mechanisms that can assure continuous connectivity while ensuring QoS in MMR network using NCTUns simulation tools. The approach is to develop and enhance a relay selection for MS with continuous connectivity in non-transparent relay. In this approach, the standard network entry procedure is modified to allow continuous connectivity with reduced signaling messages whenever MS joins RS that is out of Multihop Relay Base Station (MRBS) coverage and the relay selection is based on Signal to Noise Ratio (SNR). The QoS performances of the proposed relay selections are in terms of throughput and average end-to-end (ETE) delay. The findings for the proposed relay selection in non-transparent relay shows that the throughput degradation between low mobility MS (30m/s) and high mobility MS (50m/s) is only about 2.0%. The proposed relay selection mechanisms can be applied in any high mobility multi-tier cellular network.


2019 ◽  
Author(s):  
André Fernandes ◽  
Fabricio De Souza Farias ◽  
Aline Ohashi ◽  
Marcos Oliveira ◽  
João Crisostomo Weyl Albuquerque Costa

Fifth generation (5G) cellular networks will be the key element of a society that is becoming increasingly interconnected and digitalized. Applications adopted in many social and industrial sectors will require from 5G networks higher standards of availability and reliability. These requirements are leading operators to plan the deployment of protection schemes in the backhaul layer. In this context, our aim is to employ simulation to assess in a technical and economic way different backhaul protection schemes based on passive optical network (PON). The results indicate that the use of protection can increase the viability of 5G networks based on a PON backhaul supporting a hybrid fronthaul with fiber and copper.


Author(s):  
О.Г. ПОНОМАРЕВ ◽  
М. АСАФ

Рассмотрена проблема коррекции искажений OFDM-сигнала, вызванных смещением частоты дискретизации сигнала в приемном и передающем устройствах системы сотовой связи пятого поколения. Предлагаемый метод компенсации смещения частоты дискретизации основывается на прямой коррекции искажений, вносимых в передаваемый сигнал наличием смещения, и не предполагает какой-либо оценки величины смещения. Метод предназначен для коррекции сигналов в восходящем канале системы сотовой связи пятого поколения и основывается на использовании референсных сигналов, рекомендованных стандартами 3GPP. Результаты численного моделирования показали, что использование предлагаемого метода позволяет повысить эффективность передачи данных по многолучевому радиоканалу более чем на 15% в широком диапазоне значений отношения сигнал/шум. 5G-NR, CP-OFDM, synchronization, sample clock offset, PUSCH. О The paper investigates the issue of sampling clock offset ( SCO) in the fifth generation new radio systems. Due to the imperfect SCO estimation methods, the correction methods relying on the SCO estimation are not perfect, so the proposed method directly corrects the effect of SCO without using any kind of estimation method. Our method is designed to correct the signals in the physical uplink shared channel (PUSCH). The method uses reference signals as recommended by the 3rd generation partnership project (3GPP) standards. The results of the numerical simulation show that the use of the proposed method increases the efficiency of data transmission over the multipath radio channel by more than 15% in a wide range of signal-to-noise ratio values.


Data Mining ◽  
2013 ◽  
pp. 336-365
Author(s):  
Bing He ◽  
Bin Xie ◽  
Sanjuli Agrawal ◽  
David Zhao ◽  
Ranga Reddy

With the ever growing demand on high throughput for mobile users, 3G cellular networks are limited in their network capacity for offering high data services to a large number of users. Consequently, many Internet services such as on-demand video and mobile TV are hard to be satisfactorily supported by the current 3G cellular networks. 3GPP Long Term Evolution (LTE) is a recently proposed 4G standard, representing a significant advance of 3G cellular technology. Attractively, LTE would offer an uplink data speed up to 50 Mbps and a downlink speed up to 100 Mbps for various services such as traditional voice, high-speed data, multimedia unicast, and multimedia broadcasting. In such a short time, it has been broadly accepted by major wireless vendors such as Verizon-Vodafone, AT&T, NTT-Docomo, KDDI, T-Mobile, and China Mobile. In order for high data link speed, LTE adapts new technologies that are new to 3G network such as Orthogonal Frequency Division Multiplexing (OFDM) and Multiple-Input Multiple-Output (MIMO). MIMO allows the use of more than one antenna at the transmitter and receiver for higher data transmission. The LTE bandwidth can be scalable from 1.25 to 20 MHz, satisfying the need of different network operators that may have different bandwidth allocations for services, based on its managed spectrum. In this chapter, we discuss the major advance of the LTE and its recent research efforts in improving its performance. Our illustration of LTE is comprehensive, spanning from the LTE physical layer to link layer. In addition, the LTE security is also discussed.


Author(s):  
Giuseppe Araniti ◽  
Massimo Condoluci ◽  
Sara Pizzi ◽  
Antonella Molinaro

In recent years, mobile operators are observing a growing demand of multicast services over radio cellular networks. In this scenario, multicasting is the technology exploited to serve a group of users who simultaneously request the same data content. Since multicast applications are expected to be massively exchanged over the forthcoming fifth generation (5G) systems, the third-generation partnership project (3GPP) defined the multimedia broadcast multicast service (MBMS) standard. MBMS supports multicast services over long-term evolution (LTE), and the 4G wireless technology provides high quality services in mobile environments. Nevertheless, several issues related to the management of MBMS services together with more traditional unicast services are still open. The aim of this chapter is to analyze the main challenges in supporting heterogeneous traffic over LTE with particular attention to resource management, considered as the key aspect for an effective provisioning of mobile multimedia services over cellular networks.


Author(s):  
Tamer Z. Emara

The voice-over-Internet protocol (VoIP) service is expected to be widely supported in wireless mobile networks. Mobile Broadband Wireless networks VoIP service to users with high mobility requirements, connecting via portable devices which rely on the use of batteries by necessity. Energy consumption significantly affects mobile subscriber stations in wireless broadband access networks. Efficient energy saving is an important and challenging issue because all mobile stations are powered by limited battery lifetimes. Therefore, the authors propose an adaptive mechanism suitable for VoIP service with silence suppression. The proposed mechanism was examined with a computer simulation. The simulation results demonstrate that the proposed mechanism reduces energy consumption.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 668
Author(s):  
Samet Gelincik ◽  
Ghaya Rekaya-Ben Othman

This paper investigates the achievable per-user degrees-of-freedom (DoF) in multi-cloud based sectored hexagonal cellular networks (M-CRAN) at uplink. The network consists of N base stations (BS) and K ≤ N base band unit pools (BBUP), which function as independent cloud centers. The communication between BSs and BBUPs occurs by means of finite-capacity fronthaul links of capacities C F = μ F · 1 2 log ( 1 + P ) with P denoting transmit power. In the system model, BBUPs have limited processing capacity C BBU = μ BBU · 1 2 log ( 1 + P ) . We propose two different achievability schemes based on dividing the network into non-interfering parallelogram and hexagonal clusters, respectively. The minimum number of users in a cluster is determined by the ratio of BBUPs to BSs, r = K / N . Both of the parallelogram and hexagonal schemes are based on practically implementable beamforming and adapt the way of forming clusters to the sectorization of the cells. Proposed coding schemes improve the sum-rate over naive approaches that ignore cell sectorization, both at finite signal-to-noise ratio (SNR) and in the high-SNR limit. We derive a lower bound on per-user DoF which is a function of μ BBU , μ F , and r. We show that cut-set bound are attained for several cases, the achievability gap between lower and cut-set bounds decreases with the inverse of BBUP-BS ratio 1 r for μ F ≤ 2 M irrespective of μ BBU , and that per-user DoF achieved through hexagonal clustering can not exceed the per-user DoF of parallelogram clustering for any value of μ BBU and r as long as μ F ≤ 2 M . Since the achievability gap decreases with inverse of the BBUP-BS ratio for small and moderate fronthaul capacities, the cut-set bound is almost achieved even for small cluster sizes for this range of fronthaul capacities. For higher fronthaul capacities, the achievability gap is not always tight but decreases with processing capacity. However, the cut-set bound, e.g., at 5 M 6 , can be achieved with a moderate clustering size.


Sign in / Sign up

Export Citation Format

Share Document