Protective effects of activated protein C in sepsis

2008 ◽  
Vol 100 (10) ◽  
pp. 582-592 ◽  
Author(s):  
Lisa J. Toltl ◽  
Laura L. Swystun ◽  
Laura Pepler ◽  
Patricia C. Liaw

SummarySepsis remains a complex syndrome associated with significant morbidity and mortality. It is now widely accepted that the pathways of inflammation, coagulation, apoptosis, and endothelial permeability are intimately linked in sepsis pathophysiology. The clinical success of activated protein C (APC), a natural anticoagulant, in reducing mortality in patients with severe sepsis has fuelled basic and preclinical research on the protective effects of this molecule. Over the past 15 years, impressive research advances have provided novel insights into the multifunctional activities of APC. APC is now viewed not only as an anticoagulant, but also as a cell signaling molecule that dampens the excessive or insufficiently controlled host response during sepsis. This review attempts to summarize the pleiotropic activities of APC with focus on its ability to inhibit coagulation, inflammation, apoptosis, and endothelial barrier breakdown. A comprehensive PUBMED literature review up to May 2008 was conducted.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 28-28
Author(s):  
Clemens Feistritzer ◽  
Laurent O. Mosnier ◽  
Enrico Di Cera ◽  
John H. Griffin ◽  
Matthias Riewald

Abstract Protein C (PC) is activated by thrombomodulin-bound thrombin on the endothelial cell surface and activated protein C (APC) inhibits blood coagulation in a negative feedback loop. Endothelial PC receptor (EPCR) can bind PC/APC and activation of EPCR-bound PC is enhanced. Exogenous APC has barrier protective effects on endothelial cells that depend on EPCR binding and protease activated receptor-1 (PAR1) cleavage and that may contribute to the anti-inflammatory effects of APC. Plasma APC concentrations in vivo are low compared to the substrate PC and in order to induce protective signaling exogenous APC has to compete with PC for EPCR binding. In this study we investigated whether the endogenous PC activation pathway may be linked to efficient protective responses analyzing endothelial barrier permeability in a dual chamber system. When endothelial EA.hy926 cells were incubated for 3 h in the presence of 80 nM purified PC and different concentrations of thrombin a dose-dependent linear increase of APC activity in the cell medium was observed over time. APC generation was detectable upon incubation with 20 pM thrombin or higher and a significant barrier protective response to 20 pM thrombin was found only in the presence of PC. 40 pM thrombin enhanced barrier integrity in the presence and absence of PC, consistent with our previous results. To exclude direct thrombin effects on endothelial permeability and to compare protective effects of exogenous and endogenously generated APC, we used the anticoagulant double mutant thrombin W215A/E217A (WE). WE was about 10 times less active than wildtype thrombin for PC activation in our system. However, PAR1-dependent induction of MAP kinase phosphorylation required more than 1000-fold higher concentrations of the thrombin mutant. Thus, 1–10 nM WE leads to APC generation without directly inducing PAR1-dependent signaling. When cells were incubated with various concentrations of exogenous APC or WE+80 nM PC, barrier protective effects of 5 nM exogenous APC and 2 nM WE+80 nM PC (1.3 nM APC generated after 3 h) were similar. Because APC is generated at a constant rate during the incubation period, the average concentration of generated APC in the cell medium was only about 0.65 nM, suggesting that signaling by endogenously generated APC was significantly more efficient. To conclusively demonstrate that protective effects in response to WE are mediated by APC generation, we used recombinant zymogen wildtype PC and a PC variant with a substitution of the active site serine with alanine (PC S360A). Cells were incubated with control or 80 nM wildtype PC and PC S360A, in the presence or absence of WE (4 nM) and exogenous APC (3.3 nM). WE induced protective signaling only in the presence of wildtype PC but not PC S360A. Barrier protective effects of exogenous APC were blocked by both wildtype PC and PC S360A, consistent with their expected role as competitive inhibitors for APC binding to EPCR. These data demonstrate that efficient barrier enhancement by APC is indeed mechanistically coupled to the PC activation pathway. Signaling by endogenously generated APC may play an important role in the regulation of inflammation.


2019 ◽  
Vol 20 (4) ◽  
pp. 903 ◽  
Author(s):  
Ruilong Zhao ◽  
Haiyan Lin ◽  
Lara Bereza-Malcolm ◽  
Elizabeth Clarke ◽  
Christopher Jackson ◽  
...  

Independent of its well-known anticoagulation effects, activated protein C (APC) exhibits pleiotropic cytoprotective properties. These include anti-inflammatory actions, anti-apoptosis, and endothelial and epithelial barrier stabilisation. Such beneficial effects have made APC an attractive target of research in a plethora of physiological and pathophysiological processes. Of note, the past decade or so has seen the emergence of its roles in cutaneous wound healing—a complex process involving inflammation, proliferation and remodelling. This review will highlight APC’s functions and mechanisms, and detail its pre-clinical and clinical studies on cutaneous wound healing.


1987 ◽  
Author(s):  
J C Fredenburgh ◽  
D Collen ◽  
M E Nesheim

The profibrinolytic activity of human activated protein C (APC) was studied in a cell-free system using human plasma. Normal and Ba+* citrate adsorbed human plasmas were dialyzed against 150mM NaCl, 20mM Hepes, pH 7.4 and diluted to an A280 of 16. Reactions were initiated by the addition of aliquots of plasma to cuvettes containing human melanoma tPA and human thrombin at final concentrations of 1 and 30nM, respectively. The effects of Ca+* and varying concentrations of APC on clotlysis times were examined by monitoring turbidity at 600nM while maintaining the temperature at 37°C. The lysis time, defined as the midpoint of turbidity change, was 128 min for normal plasma containing 10 mM Ca+* and showed progressive and saturable shortening to about 90 min at > 50nM APC. In the absence of Ca+*, lysis time was 55 min for normal plasma and did not shorten in response to APC. With Ba+* citrate adsorbed plasma, the lysis time was 82 min in the presence of 10mM Ca+*, and shortened to 42 min without Ca+*. APC had no effect on lysis time in Ba+* adsorbed plasma either with or without Ca+*. Both bovine and human APC were equally potent. Electrophoresis in DodSO4 and autoradiography of plasma samples containing 125I-labelled plasminogen indicated enhanced rates of plasminogen activation in the presence of APC. These data indicate that APC decreases lysis time in vitro at the level of plasminogen activation. This effect is dependent on Ca+* and may involve additional vitamin K-dependent protein ( s).


2019 ◽  
Vol 216 (2) ◽  
pp. 279-293 ◽  
Author(s):  
Divna Lazic ◽  
Abhay P. Sagare ◽  
Angeliki M. Nikolakopoulou ◽  
John H. Griffin ◽  
Robert Vassar ◽  
...  

3K3A-activated protein C (APC), a cell-signaling analogue of endogenous blood serine protease APC, exerts vasculoprotective, neuroprotective, and anti-inflammatory activities in rodent models of stroke, brain injury, and neurodegenerative disorders. 3K3A-APC is currently in development as a neuroprotectant in patients with ischemic stroke. Here, we report that 3K3A-APC inhibits BACE1 amyloidogenic pathway in a mouse model of Alzheimer’s disease (AD). We show that a 4-mo daily treatment of 3-mo-old 5XFAD mice with murine recombinant 3K3A-APC (100 µg/kg/d i.p.) prevents development of parenchymal and cerebrovascular amyloid-β (Aβ) deposits by 40–50%, which is mediated through NFκB–dependent transcriptional inhibition of BACE1, resulting in blockade of Aβ generation in neurons overexpressing human Aβ-precursor protein. Consistent with reduced Aβ deposition, 3K3A-APC normalized hippocampus-dependent behavioral deficits and cerebral blood flow responses, improved cerebrovascular integrity, and diminished neuroinflammatory responses. Our data suggest that 3K3A-APC holds potential as an effective anti-Aβ prevention therapy for early-stage AD.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3364-3364
Author(s):  
Laurent Burnier ◽  
Jose A. Fernandez ◽  
John H. Griffin

Abstract Abstract 3364 Activated Protein C (APC) is a circulating serine protease with two major roles to maintain homeostasis. APC acts via multiple receptors, including protease-activated receptor 1, to exert anti-apoptotic and vascular integrity protective effects. A number of protective effects of pharmacologic APC are reported in the literature, with beneficial effects in kidney, brain and irradiation-induced pathologies. The functional protections of the endogenous protein C systems are challenging to study. A better understanding of its mechanisms at different cellular levels and in different tissues is needed to enable evaluation of its further usage in humans. To that end, new tools should be considered to increase our knowledge. To help evaluate the endogenous murine protein C system and to be able to neutralize pharmacologic APC, we have made and characterized a novel rat monoclonal anti-mouse protein C antibody, SPC-54, that almost completely ablates in vitro and in vivo APC activity. In solid phase binding assays, the Kd of SPC-54 for APC was about 8 nM. In biochemical assays, SPC-54 inhibited amidolytic activity of wild-type murine APC by > 95%. SPC-54 was similarly a potent inhibitor (> 90%) of the amidolytic activity of the 5A-APC mutant. IC50 value for wild-type APC and the 5A-APC mutant were comparable. SPC-54 was pre-incubated with APC, followed by the addition of a 20 fold molar excess of biotinylated FPR-chloromethylketone, quantification of biotinylation of APC was readily made by SDS-PAGE and Western blots using infrared-coupled streptavidin. SPC-54 blocked successfully active site titration of APC using this biotinylated active site titrant. These and other experiments suggest that the SPC-54 epitope is located in the vicinity of the active site, such that it blocks different small substrates from reaching the active site. When we performed thrombin generation assays using mouse platelet-poor plasma to check whether SPC-54 was a potent blocker of APC activity in plasma, we showed that SPC-54 neutralized almost completely exogenous APC anticoagulant activity in a dose-dependent manner. Using native polyacrylamide gel migration, Western immunoblotting and immuno-precipitation with protein G-agarose, we confirmed that SPC-54 was bound to protein C in plasma after infusing mice with SPC-54 (10 mg/kg). Moreover, using a modified ELISA that is capable to quantify the pool of activatable protein C, the plasma protein C activity level was considerably decreased (> 80%) in mice after a single injection of SPC-54 (10 mg/kg), and that this effect of neutralizing circulating protein C was sustained for at least 7 days. For in vivo proof of concept, we performed murine tissue factor-induced thromboembolism experiments. Results showed a severe decrease in survival of mice that were pre-infused with SPC-54 when compared to control (survival time of 7 min vs. 42.5 min respectively, P = 0.0016). Moreover, blood perfusion in lungs of mice infused with SPC-54 (10 mg/kg) was dramatically impaired (decrease of 54%, P < 0.0001) as revealed by infrared quantification of Evans Blue dye as marker of vascular perfusion. We also used endotoxemia murine models to assess effects of SPC-54. SPC-54 decreased survival after endotoxin challenge (25 mg/kg, LD50 dose) in mice infused with SPC-54 (10 mg/kg) at 7 hours after LPS. Mortality was 100% after 36 h in the SPC-54 group, whereas controls, which received either boiled SPC-54 antibodies or PBS vehicle, showed a mortality of about 50% (P < 0.001). In summary, SPC-54 is a potent rat monoclonal antibody that neutralizes murine APC activities in vitro and in vivo. Its characteristic ability to dampen the endogenous protein C/APC system is of value to understand better the role of the endogenous protein C system in murine injury models and also to neutralize pharmacologic murine APC. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Lilian Grigorian-Shamagian ◽  
Ricardo Sanz-Ruiz ◽  
Andreu Climent ◽  
Lina Badimon ◽  
Lucio Barile ◽  
...  

Abstract Great expectations have been set around the clinical potential of regenerative and reparative medicine in the treatment of cardiovascular diseases [i.e. in particular, heart failure (HF)]. Initial excitement, spurred by encouraging preclinical data, resulted in a rapid translation into clinical research. The sobering outcome of the resulting clinical trials suggests that preclinical testing may have been insufficient to predict clinical outcome. A number of barriers for clinical translation include the inherent variability of the biological products and difficulties to develop potency and quality assays, insufficient rigour of the preclinical research and reproducibility of the results, manufacturing challenges, and scientific irregularities reported in the last years. The failure to achieve clinical success led to an increased scrutiny and scepticism as to the clinical readiness of stem cells and gene therapy products among clinicians, industry stakeholders, and funding bodies. The present impasse has attracted the attention of some of the most active research groups in the field, which were then summoned to analyse the position of the field and tasked to develop a strategy, to re-visit the undoubtedly promising future of cardiovascular regenerative and reparative medicine, based on lessons learned over the past two decades. During the scientific retreat of the ESC Working Group on Cardiovascular Regenerative and Reparative Medicine (CARE) in November 2018, the most relevant and timely research aspects in regenerative and/or reparative medicine were presented and critically discussed, with the aim to lay out a strategy for the future development of the field. We report herein the main ideas and conclusions of that meeting.


2013 ◽  
Vol 63 (2) ◽  
pp. 101-111 ◽  
Author(s):  
Lubov Gorbacheva ◽  
Svetlana Strukova ◽  
Vsevolod Pinelis ◽  
Shin’ichi Ishiwata ◽  
Rolf Stricker ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 358
Author(s):  
Tami Livnat ◽  
Yehonatan Weinberger ◽  
José A Fernández ◽  
Alaa Bashir ◽  
Gil Ben-David ◽  
...  

The activated protein C (APC) ability to inhibit choroidal neovascularization (CNV) growth and leakage was recently shown in a murine model. A modified APC, 3K3A-APC, was designed to reduce anticoagulant activity while maintaining full cytoprotective properties, thus diminishing bleeding risk. We aimed to study the ability of 3K3A-APC to induce regression of CNV and evaluate vascular endothelial growth factor (VEGF) role in APC’s activities in the retina. CNV was induced by laser photocoagulation on C57BL/6J mice. APC and 3K3A-APC were injected intravitreally after verification of CNV presence. CNV volume and vascular penetration were evaluated on retinal pigmented epithelium (RPE)-choroid flatmount by fluorescein isothiocyanate (FITC)-dextran imaging. VEGF levels were measured using immunofluorescence anti-VEGF staining. We found that 3K3A-APC induced regression of pre-existing CNV. VEGF levels, measured in the CNV lesion sites, significantly decreased upon APC and 3K3A-APC treatment. Reduction in VEGF was sustained 14 days post a single APC injection. As 3K3A-APC retained APCs’ activities, we conclude that the anticoagulant properties of APC are not mandatory for APC activities in the retina and that VEGF reduction may contribute to the protective effects of APC and 3K3A-APC. Our results highlight the potential use of 3K3A-APC as a novel treatment for CNV and other ocular pathologies.


2020 ◽  
Author(s):  
Thorben Pape ◽  
Temitayo Opemipo Idowu ◽  
Valerie Maritta Etzrodt ◽  
Klaus Stahl ◽  
Hermann Haller ◽  
...  

Abstract BackgroundSepsis is a life-threatening organ dysfunction due to a pathological host response to an infection. Vascular barrier breakdown represents a key component of the maladaptive host response and the release of pre-stored endothelial Angiopoietin-2 (Angpt-2) is a direct driver of endothelial hyperpermeability. Although it has been demonstrated that Angpt-2 is associated with morbidity and mortality, a therapeutic approach targeting this injurious endothelial protein is not available. We screened for FDA approved drugs that might have off-target effects decreasing circulating Angpt-2 levels and therefore, ameliorating capillary leakage.MethodsEndothelial cells were isolated from human umbilical veins (HUVECs) and used for in vitro studies at baseline and after stimulation (FDA-library screening, RT-PCR, ELISA, immunocytochemistry). On the functional level, we assessed real-time transendothelial electrical resistance (TER) using the ECIS (electric cell-substrate impedance sensing) device.ResultsWe identified Bifonazole (BIFO) in an unbiased library screen and found that it is able to reduce spontaneous Angpt-2 release in HUVECs in a time- and dose-dependent manner after 8, 12 and 24 h (24 h: veh: 15.6 ± 0.7 vs. BIFO: 8.6 ± 0.8 ng/mL, p < 0.0001). BIFO reduced not only Angpt-2 release but also its intra-cellular content by 33 % (p < 0.001). Stimulation of HUVECs with a sepsis mediator, i.e. tumor necrosis factor α (TNFα) (10 ng/ml) induced a rapid release of Angpt-2 that could analogously be blocked by additional treatment with BIFO (veh: 1.58 ± 0.2 vs. BIFO: 1.02 ± 0.1, p < 0.0001). On the functional level, the quantification of endothelial permeability by TER revealed that BIFO was sufficient to reduce an acute barrier breakdown induced by Thrombin (veh: 0.82 ± 0.1 vs. BIFO: 1.01 ± 0.02, p < 0.05).ConclusionThe antifungal BIFO can reduce both release and biosynthesis of the endothelial-destabilizing factor Angpt-2 in vitro. Henceforth, our results suggest that BIFO might counterpart the pathophysiology of endothelial permeability in systemic inflammation. Additional studies are needed to further investigate the underlying mechanism and to translate these findings to in vivo models.


Sign in / Sign up

Export Citation Format

Share Document