microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans

2012 ◽  
Vol 107 (04) ◽  
pp. 619-625 ◽  
Author(s):  
Bernd Denecke ◽  
André Rostalsky ◽  
Mihail Hristov ◽  
Thomas A. Koeppel ◽  
Kiril Bidzhekov ◽  
...  

SummarySmall non-coding microRNAs (miRNAs) have emerged to play critical roles in cardiovascular biology. Monocytes critically drive atherosclerotic lesion formation, and can be subdivided into a classical and non-classical subset. Here we scrutinised the miRNA signature of human classical and non-classical monocytes, and compared miRNA expression profiles of atherosclerotic plaques from human carotid arteries and healthy arteries. We identified miRNAs to be differentially regulated with a two-fold or higher difference between classical and non-classical monocyte subsets. Moreover, comparing miRNA expression in atherosclerotic plaques compared to healthy arteries, we observed several miRNAs to be aberrantly expressed, with the majority of miRNAs displaying a two-fold or higher increase in plaques and only few miRNAs being decreased. To elucidate similarities in miRNA signatures between monocyte subsets and atherosclerotic plaque, expression of miRNAs highly abundant in monocytes and plaque tissues were compared. Several miRNAs were found in atherosclerotic plaques but not in healthy vessels or either monocyte subset. However, we could identify miRNAs co-expressed in plaque tissue and classical monocytes (miR-99b, miR-152), or non-classical monocytes (miR-422a), or in both monocytes subsets. We thus unravelled candidate miRNAs, which may facilitate our understanding of monocyte recruitment and fate during atherosclerosis, and may serve as therapeutic targets for treating inflammatory vascular diseases.Note: The editorial process for this article was fully handled by Prof. G. Y. H. Lip, Editor-in-Chief.

2013 ◽  
Vol 59 (12) ◽  
pp. 1708-1721 ◽  
Author(s):  
Emma Raitoharju ◽  
Niku Oksala ◽  
Terho Lehtimäki

BACKGROUND MicroRNAs (miRNA, miR) are noncoding RNAs that regulate gene expression by hindering translation. miRNA expression profiles have been shown to differ in vivo and in vitro in many cellular processes associated with cardiovascular diseases (CVDs). The progression of CVDs has also been shown to alter the blood miRNA profile in humans. CONTENT We summarize the results of animal and cell experiments concerning the miRNA profile in the atherosclerotic process and the changes which occur in the blood miRNA profile of individuals with CVD. We also survey the relationship of these CVD-related miRNAs and their expression in the human advanced atherosclerotic plaque, thereby providing more insight into miRNA function in human atherosclerotic lesions. The miRNAs miR-126, -134, -145, -146a, -198, -210, -340*, and -92a were found to be expressed differently in the blood of individuals affected and unaffected by CVD. These differences paralleled those seen in tissue comparisons of miRNA expression in advanced atherosclerotic plaques and healthy arteries. Furthermore, several miRNAs associated with atherosclerosis in in vitro studies (such as miR-10a, -126, -145, -146a/b, -185, -210, and -326) were expressed in plaques in a similar pattern as was predicted by the in vitro experiments. The clinical implications of miRNAs in atherosclerosis as biomarkers and as possible drug targets are also reviewed. SUMMARY miRNA profiles in in vitro and in vivo studies as well as in human peripheral blood are quite representative of the miRNA expression in human atherosclerotic plaques. miRNAs appear promising in terms of future clinical applications.


Blood ◽  
2015 ◽  
Vol 125 (23) ◽  
pp. 3618-3626 ◽  
Author(s):  
Dorothée Selimoglu-Buet ◽  
Orianne Wagner-Ballon ◽  
Véronique Saada ◽  
Valérie Bardet ◽  
Raphaël Itzykson ◽  
...  

Key Points An increase in the classical monocyte subset to >94% of total monocytes discriminates CMML from other monocytoses with high specificity. This characteristic increase in classical monocytes disappears in CMML patients who respond to hypomethylating agents.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Ida Marie Rundgren ◽  
Elisabeth Ersvær ◽  
Aymen Bushra Ahmed ◽  
Anita Ryningen ◽  
Øystein Bruserud

Abstract Background Induction therapy of multiple myeloma patients prior to autologous stem cell transplantation has changed from conventional chemotherapy to treatment based on proteasome inhibitors or immunomodulatory drugs. We used flow cytometry to analyze total monocyte and monocyte subset (classical, intermediate and non-classical monocytes) peripheral blood levels before and following auto-transplantation for a consecutive group of myeloma patients who had received the presently used induction therapy. Results The patients showed normal total monocyte concentrations after induction/stem cell mobilization, but the concentrations of classical monocytes were increased compared with healthy controls. Melphalan conditioning reduced the levels of total CD14+ as well as classical and non-classical monocytes, whereas intermediate monocytes were not affected. Thus, melphalan has a non-random effect on monocyte subsets. Melphalan had a stronger effect on total and classical monocyte concentrations for those patients who had received induction therapy including immunomodulatory drugs. Total monocytes and monocyte subset concentrations decreased during the period of pancytopenia, but monocyte reconstitution occurred before hematopoietic reconstitution. However, the fractions of various monocyte subsets varied considerably between patients. Conclusions The total level of circulating monocytes is normalized early after auto-transplantation for multiple myeloma, but pre- and post-transplant levels of various monocyte subsets show considerable variation between patients.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2009-2009 ◽  
Author(s):  
Chetasi Talati ◽  
Ling Zhang ◽  
Ghada Shaheen ◽  
Andrew Kuykendall ◽  
Markus Ball ◽  
...  

Abstract Background: The WHO requires a sustained peripheral monocytosis (≥1x109cells/L) for the diagnosis of CMML. However, a peripheral monocytosis is not pathognomonic because monocytosis is observed in other hematologic neoplasms and benign reactive conditions. A recent study demonstrated that CMML is uniquely represented by the expansion of classical monocytes (CD14+/CD16-) (Selimoglu-Buet et al, Blood 20151). Further, measuring the relative fraction of classical monocytes, by itself, was capable of distinguishing CMML from reactive conditions and a mixed cohort of hematologic neoplasms. In this study, we aimed to validate these findings in a clinical and genetically annotated cohort of CMML and other hematologic malignancies with a focus on MDS, and normal age-matched controls. Methods: We profiled monocyte subsets in patients with a suspected diagnosis of CMML or MDS as previously described1 after obtaining institutional review board approval. Clinical demographics and genotyping of patient samples (52 gene TruSight panel, Illumina) were collected via retrospective chart review. Descriptive statistics were used to summarize clinical demographics, genotyping, and their association to classical monocytosis (CM). Receiver Operator Curves (ROC) were generated to test the sensitivity and specificity of the monocyte analysis and all calculated p-values were two-sided. Results: From October 2015 to May 2016 monocyte subsets were profiled in 159 genetically defined cases. The diagnosis of patients in our cohort included CMML (n=29), MDS (n=86), other myeloid malignancies (n=26), and reactive conditions (n=18). Within CMML cases the median age at diagnosis was 70 years, median hemoglobin, platelets, and monocyte counts were 10.9 g/dL, 102x109cells/L, and 2.05x109cells/L, respectively. As previously reported, CM was evident in all CMML cases and was capable of distinguishing CMML from normal age-matched controls. ROC analysis confirmed that the assay was capable of differentiating between these groups (AUC of 0.9592, p<0.001) (Figure 1A). Further, CM was also capable of discriminating CMML from MDS (AUC 0.8793, p <0.0001 (Figure 1B). However, no difference in CM was evident between French American British or WHO-defined CMML subtypes. There were also no differences in CM between lower and higher risk disease as defined by established cytogenetic risk stratification or prognostic scoring systems validated in CMML. Exposure to hypomethylating agent did not affect the pattern of CM. When comparing cases based on the presence of splicing gene mutations, DNA methylation gene mutations, ASXL1 or signaling gene mutations, no difference in classical monocytes was identified. To explore the impact of CM in MDS, we identified 24 MDS cases that had "CMML-like" CM (CM ≥ 94%) and 60 MDS cases with normal monocyte subsets (Figure 2). There were no differences in age, hemoglobin, platelets, or presence of splenomegaly. However, CMML-like MDS cases were associated with an increased WBC (3.815x109 cells/L vs. 2.34x109 cells/L), increased neutrophils (1.73x109 cells/L vs. 1.07x109 cells/L, p=0.02), and increased absolute monocyte counts (355X109 cells/L vs. 120x109 cells/L, p=0.02) (Figure 2). Furthermore, the MDS cohort without classical monocytosis was more frequently associated with poor risk cytogenetics (Odds ratio (OR) 3.429, 95% CI 1.032-10.08, p=0.04) and was more likely to be higher-risk as defined by the IPSS-R (OR 8.767, 95% CI 1.088-70.69, p=0.0174). Analysis of mutated genes identified SF3B1 to be present at greater frequency in the CMML-like MDS subgroup (OR 3.457, 95% CI 1.074-11.21, p=0.0486) while the frequency of other commonly mutated genes in CMML were not significantly different (Figure 2). Conclusions: Our study demonstrates that classical monocytes can discriminate CMML from normal age-matched controls, validating a previous study. We additionally demonstrate that CM is capable of discriminating CMML from a large MDS cohort. Further, we identified two MDS subgroups that can be differentiated by the fraction of classical monocytes and are clinically distinguished by a favorable prognosis and higher frequency of SF3B1 mutation. Our data suggest that analysis of monocyte subsets should be incorporated in the diagnostic algorithm of CMML and that the clinical significance of CM in MDS merits further investigation. Disclosures Lancet: ERYtech: Consultancy; Biopath Holdings: Consultancy; Baxalta: Consultancy; Amgen: Consultancy; Jazz Pharmaceuticals: Consultancy; Boehringer-Ingelheim: Consultancy; Kalo Bios: Consultancy; Pfizer: Research Funding; Quantum First: Consultancy; Karyopharm: Consultancy; Novartis: Consultancy; Celgene: Consultancy, Research Funding; Seattle Genetics: Consultancy. Komrokji:Novartis: Consultancy, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Padron:KALOBIOS: Research Funding; CTI: Honoraria, Research Funding; Incyte: Research Funding; Novartis: Honoraria.


2020 ◽  
Vol 31 (11) ◽  
pp. 2523-2542
Author(s):  
Tabitha Turner-Stokes ◽  
Ana Garcia Diaz ◽  
Damilola Pinheiro ◽  
Maria Prendecki ◽  
Stephen P. McAdoo ◽  
...  

BackgroundImmune complexes within glomerular capillary walls cause crescentic GN (CrGN). Monocytes and macrophages are important in mediating CrGN, but little work has been done to phenotype the subpopulations involved and determine their respective contributions to glomerular inflammation.MethodsLive glomerular imaging using confocal microscopy monitored intravascular monocyte subset behavior during nephrotoxic nephritis (NTN) in a novel WKY-hCD68-GFP monocyte/macrophage reporter rat strain. Flow cytometry and qPCR further analyzed ex vivo the glomerular leukocyte infiltrate during NTN.ResultsNon-classical monocytes surveyed the glomerular endothelium via lymphocyte function-associated antigen 1 (LFA-1) in the steady state. During NTN, non-classical monocytes were recruited first, but subsequent recruitment and retention of classical monocytes was associated with glomerular damage. Monocytes recruited to the glomerular vasculature did not undergo transendothelial migration. This finding suggests that inflammation in immune complex-mediated CrGN is predominantly intravascular, driven by dynamic interactions between intravascular blood monocytes and the endothelium. Glomerular endothelium and non-classical monocytes overexpressed a distinct chemokine axis, which may orchestrate inflammatory myeloid cell recruitment and expression of damage mediators. Reduced classical monocyte recruitment in Lewis rats during NTN confirmed a role for CD16 in mediating glomerular damage.ConclusionsMonocyte subsets with distinct phenotypes and effector functions may be important in driving inflammation in experimental CrGN resulting from immune complexes formed within the glomerular capillary wall. LFA-1–dependent endothelial surveillance by non-classical monocytes may detect immune complexes through CD16, orchestrating the inflammatory response through intravascular retention of classical monocytes, which results in glomerular damage and proteinuria.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Noemi Cifani ◽  
Maria Proietta ◽  
Maurizio Taurino ◽  
Luigi Tritapepe ◽  
Flavia Del Porto

Monocytes are a heterogeneous cell population distinguished into three subsets with distinctive phenotypic and functional properties: “classical” (CD14++CD16-), “intermediate” (CD14++CD16+), and “nonclassical” (CD14+CD16++). Monocyte subsets play a pivotal role in many inflammatory systemic diseases including atherosclerosis (ATS). Only a low number of studies evaluated monocyte behavior in patients affected by cardiovascular diseases, and data about their role in acute aortic dissection (AAD) are lacking. Thus, the aim of this study was to investigate CD14++CD16-, CD14++CD16+, and CD14+CD16++ cells in patients with Stanford-A AAD and in patients with carotid artery stenosis (CAS).Methods. 20 patients with carotid artery stenosis (CAS group), 17 patients with Stanford-A AAD (AAD group), and 17 subjects with traditional cardiovascular risk factors (RF group) were enrolled. Monocyte subset frequency was determined by flow cytometry.Results. Classical monocytes were significantly increased in the AAD group versus CAS and RF groups, whereas intermediate monocytes were significantly decreased in the AAD group versus CAS and RF groups.Conclusions. Results of this study identify in AAD patients a peculiar monocyte array that can partly explain depletion of T CD4+ lymphocyte subpopulations observed in patients affected by AAD.


2021 ◽  
Vol 22 (17) ◽  
pp. 9119
Author(s):  
Helen Williams ◽  
Corinne D. Mack ◽  
Stephen C. H. Li ◽  
John P. Fletcher ◽  
Heather J. Medbury

Monocytes play a key role in cardiovascular disease (CVD) as their influx into the vessel wall is necessary for the development of an atherosclerotic plaque. Monocytes are, however, heterogeneous differentiating from classical monocytes through the intermediate subset to the nonclassical subset. While it is recognized that the percentage of intermediate and nonclassical monocytes are higher in individuals with CVD, accompanying changes in inflammatory markers suggest a functional impact on disease development that goes beyond the increased proportion of these ‘inflammatory’ monocyte subsets. Furthermore, emerging evidence indicates that changes in monocyte proportion and function arise in dyslipidemia, with lipid lowering medication having some effect on reversing these changes. This review explores the nature and number of monocyte subsets in CVD addressing what they are, when they arise, the effect of lipid lowering treatment, and the possible implications for plaque development. Understanding these associations will deepen our understanding of the clinical significance of monocytes in CVD.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Leta Melaku ◽  
Addisu Dabi

Abstract Background Atherosclerosis is a chronic lipid-driven inflammatory disease with infiltration of low-density lipoprotein and is considered as the pivotal step in plaque formation. The aim of the review is to get into the fine details of pathophysiologic mechanisms responsible for atherosclerosis with atherosclerotic lesion classification. It also provides a summary of current biomarkers other than the traditional risk factors so that new treatment modalities can emerge and reduce the morbidity and mortality associated with atherosclerosis. Main body In the classification of atherosclerosis made by American Heart Association (AHA), AHA Type I lesion is the earliest vascular change described microscopically. AHA Type II lesion is primarily composed of abundant macrophages. AHA Type III lesion is the earliest of progressive lesions, while AHA Type IV lesion consists of an acellular necrotic core. Various biomarkers are implicated in different stages of the pathophysiological mechanism of plaque formation and evolution. C Reactive Protein plays a direct role in promoting the inflammatory component of atherosclerosis. Fibrinogen was demonstrated to be elevated among patients with acute thrombosis. Higher leukocyte count is associated with a greater cardiovascular risk. Cytokines have been implicated in atheroma formation and complications. High rates of protease activated receptor expression are also induced by interleukin-6 secretion in atherosclerotic lesions and areas of vascular tissue injury. Cluster of differentiation 40 receptor and its ligand have been also detected in atherosclerotic plaques. Osteopontin, acidic phosphoprotein, and osteoprotegerin have emerged as novel markers of atherosclerotic plaque composition. There are also overproductions of matrix metalloproteinases in the rupture-prone regions and promote lipid-necrotic core formation in the atherosclerotic plaque. Myeloperoxidase has been proposed as a marker of plaque instability. Oxidized low-density lipoprotein receptor 1 provides a route of entry for oxidized low-density lipoprotein into the endothelium. A human atherosclerotic lesion also expresses lipoprotein-associated phospholipase A2. Short conclusion Atherosclerotic plaques are the battlefield between an unbalanced immune response and lipid accumulation in the intima of arteries. Most of the biomarkers associated with atherosclerosis are indicators of inflammatory response and will also be used for medical purposes.


2020 ◽  
Author(s):  
R.D. Johnston ◽  
R.T. Gaul ◽  
C. Lally

AbstractThe development and subsequent rupture of atherosclerotic plaques in human carotid arteries is a major cause of ischemic stroke. Mechanical characterization of atherosclerotic plaques can aid our understanding of this rupture risk. Despite this however, experimental studies on human atherosclerotic carotid plaques, and fibrous plaque caps in particular, are very limited. This study aims to provide further insights into atherosclerotic plaque rupture by mechanically testing human fibrous plaque caps, the region of the atherosclerotic lesion most often attributed the highest risk of rupture. The results obtained highlight the variability in the ultimate tensile stress, strain and stiffness experienced in atherosclerotic plaque caps. By pre-screening all samples using small angle light scattering (SALS) to determine the dominant fibre direction in the tissue, along with supporting histological analysis, this work suggests that the collagen fibre alignment in the circumferential direction plays the most dominant role for determining plaque structural stability. The work presented in this study could provide the basis for new diagnostic approaches to be developed, which non-invasively identify carotid plaques at greatest risk of rupture.Graphical Abstract


2020 ◽  
Author(s):  
Francesco Vallania ◽  
Liron Zisman ◽  
Claudia Macaubas ◽  
Shu-Chen Hung ◽  
Narendiran Rajasekaran ◽  
...  

Monocytes and monocyte-derived cells play important roles in the regulation of inflammation, both as precursors as well as effector cells. Monocytes are heterogeneous and characterized by three distinct subsets in humans. Classical and non-classical monocytes represent the most abundant subsets, each carrying out distinct biological functions. Consequently, altered frequencies of different subsets have been associated with inflammatory conditions, such as infections and autoimmune disorders including lupus, rheumatoid arthritis, inflammatory bowel disease, and, more recently, COVID-19. Dissecting the contribution of different monocyte subsets to disease is currently limited by samples and cohorts, often resulting in underpowered studies and, consequently, poor reproducibility. Public transcriptomes provide an alternative source of data characterized by high statistical power and real world heterogeneity. However, most transcriptome datasets profile bulk blood or tissue samples, requiring the use of in silico approaches to quantify changes in the levels of specific cell types.Here, we integrated 853 publicly available microarray expression profiles of sorted human monocyte subsets from 45 independent studies to identify robust and parsimonious gene expression signatures, consisting of 10 genes specific to each subset. These signatures, although derived using only datasets profiling healthy individuals, maintain their accuracy independent of the disease state in an independent cohort profiled by RNA-sequencing (AUC = 1.0). Furthermore, we demonstrate that our signatures are specific to monocyte subsets compared to other immune cells such as B, T, dendritic cells (DCs) and natural killer (NK) cells (AUC = 0.87~0.88, p<2.2e-16). This increased specificity results in estimated monocyte subset levels that are strongly correlated with cytometry-based quantification of cellular subsets (r = 0.69, p = 6.7e-4). Consequently, we show that these monocyte subset-specific signatures can be used to quantify changes in monocyte subsets levels in expression profiles from patients in clinical trials. Finally, we show that proteins encoded by our signature genes can be used in cytometry-based assays to specifically sort monocyte subsets. Our results demonstrate the robustness, versatility, and utility of our computational approach and provide a framework for the discovery of new cellular markers.


Sign in / Sign up

Export Citation Format

Share Document