scholarly journals Influence of PAI-1 on Adipose Tissue Growth and Metabolic Parameters in a Murine Model of Diet-Induced Obesity

2000 ◽  
Vol 20 (4) ◽  
pp. 1150-1154 ◽  
Author(s):  
P. E. Morange ◽  
H. R. Lijnen ◽  
M. C. Alessi ◽  
F. Kopp ◽  
D. Collen ◽  
...  
2016 ◽  
Vol 101 (4) ◽  
pp. 1605-1614 ◽  
Author(s):  
Soyoung Park ◽  
Yosep Ji ◽  
Hoe-Yune Jung ◽  
Hyunjoon Park ◽  
Jihee Kang ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30378 ◽  
Author(s):  
Kendra L. Puig ◽  
Angela M. Floden ◽  
Ramchandra Adhikari ◽  
Mikhail Y. Golovko ◽  
Colin K. Combs

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 276-LB ◽  
Author(s):  
RENATA PEREIRA ◽  
ANGELA C. OLVERA ◽  
ALEX A. MARTI ◽  
RANA HEWEZI ◽  
WILLIAM A. BUI TRAN ◽  
...  

2017 ◽  
Vol 68 (7) ◽  
pp. 1481-1484 ◽  
Author(s):  
Radu Mihail Mirica ◽  
Mihai Ionescu ◽  
Alexandra Mirica ◽  
Octav Ginghina ◽  
Razvan Iosifescu ◽  
...  

Obesity involves the growth of adipose tissue cells (adipocytes and preadipocytes), as well as microvascular endothelial cells. Matrix metalloproteinases (MMPs) are relevant ezymes for the modulation of extracellular matrix (ECM) and adipocyte and preadipocytes differentiation. They are elevated in obese patients, generating abnormal ECM metabolism.[1]. This article proposes a thorough study of literature with focus on the important roles of matrix metalloproteinases in the pathophysiology of obesity. The article represents a narrative review based on an English-language PubMed research of the medical literature regardind important aspects of the proposed aim. MMP-2 activity was signi�cantly higher than MMP-9, both activities were detectable. MMP-9 was strongly correlated with body weight parameters before surgery, as well as after significant body weight reduction as a result of bariatric surgery. Concerning MMP-2 and MMP-9 they are also involved in the turnover of basement membranes both those of adipose tissue and endothelial. MMP-9 levels were moderately correlated with HDL cholesterol levels. Taken together, the present data suggest that changes in ECM through MMP-mediated degradation might play a critical role in the adipocyte differentiation process. These findings are detected both in clinical trials and in laboratory animal experiments. It is then tempting to speculate that the adipocyte-derived MMPs might represent a new pharmacological target for the inhibition of adipose tissue growth by inhibiting adipose differentiation as well as angiogenic process.


2021 ◽  
Author(s):  
Xiao Guo ◽  
Xuedan Cao ◽  
Xiugui Fang ◽  
Ailing Guo ◽  
Erhu Li

In this study, Ougan juice (OJ) and lactic acid bacteria fermented Ougan juice (FOJ) were investigated individually for their capability of preventing obesity in high-fat diet (HFD)-fed C57BL/6J mice. After...


2021 ◽  
pp. 1-24
Author(s):  
L. Irasema Chávaro-Ortiz ◽  
Brenda D. Tapia-Vargas ◽  
Mariel Rico-Hidalgo ◽  
Ruth Gutiérrez-Aguilar ◽  
María E. Frigolet

Abstract Obesity is defined as increased adiposity, which leads to metabolic disease. The growth of adipose tissue depends on its capacity to expand, through hyperplasia or hypertrophy, in order to buffer energy surplus. Also, during the establishment of obesity, adipose tissue expansion reflects adipose lipid metabolism (lipogenesis and/or lipolysis). It is well known that dietary factors can modify lipid metabolism promoting or preventing the development of metabolic abnormalities that concur with obesity. Trans-palmitoleic acid (TP), a biomarker of dairy consumption, has been associated with reduced adiposity in clinical studies. Thus, we aimed to evaluate the effect of TP over adiposity and lipid metabolism-related genes in a rodent model of diet-induced obesity (DIO). To fulfil this aim, we fed C57BL/6 mice with a Control or a High Fat diet, added with or without TP (3g/kg diet), during 11 weeks. Body weight and food intake were monitored, fat pads were weighted, histology of visceral adipose tissue was analysed, and lipid metabolism-related gene expression was explored by qPCR. Results show that TP consumption prevented weight gain induced by high fat diet, reduced visceral adipose tissue weight, and adipocyte size, while increasing the expression of lipolytic molecules. In conclusion, we show for the first time that TP influences adipose tissue metabolism, specifically lipolysis, resulting in decreased adiposity and reduced adipocyte size in a DIO mice model.


Sign in / Sign up

Export Citation Format

Share Document