Abstract 19409: β2-Adrenergic Receptor Regulation of Innate Immune Responses Following Acute Myocardial Injury

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Laurel A Grisanti ◽  
Anna Gumpert ◽  
Joshua Gorsky ◽  
Ashley A Repas ◽  
Erhe Gao ◽  
...  

Inflammatory responses are important for cardiac remodeling and tissue repair after myocardial infarction (MI). The sympathetic nervous system is known to regulate immune responses, in large part through the β2-adrenergic receptor (β2AR), however the influence of β2AR in regulating the inflammatory response following MI is unknown. Thus, to examine the contribution of β2AR on immune cells following MI, wild-type (WT) mice were irradiated and then received β2ARKO or WT control bone marrow (BM) transplants to create immune cell-specific knockout (KO) animals. Lack of β2AR expression in BM resulted in 100% mortality from cardiac rupture within two weeks of receiving MI, in contrast to their WT counterparts that had ∼20% death. Granulocyte populations were sequestered in the spleen of β2ARKO chimeric mice resulting in reductions in post-MI infiltration of monocyte/macrophage, neutrophil and mast cell populations into the heart. Additionally, alterations in chemokine receptor levels, particularly CCR2, on BM resulted in decreased cellular migration, and use of a CCR2 antagonist in vivo recapitulated the β2ARKO chimeric mouse phenotype following MI. Administration of β2AR agonists in vitro and in vivo increased CCR2 expression and BM migration while β2AR antagonists decreased CCR2 expression and increased splenic leukocyte retention in vivo . Use of pepducins as allosteric modulators of β2AR signaling demonstrated the importance of β-arrestin-mediated signaling in increasing CCR2 expression and responses. The impact of β2AR deletion on BM cell CCR2 expression and migration, splenic retention of leukocytes and reciprocal cardiac leukocyte infiltration following MI could be reversed via lentivirus-mediated β2AR rescue in the β2ARKO BM prior to transplantation. These results demonstrate the critical role of β2AR in the regulation of CCR2 expression on hematopoietic cells and its importance in mounting an immune response to promote healing following acute cardiac injury.

2020 ◽  
Author(s):  
Gareth B. Kitchen ◽  
Thomas Hopwood ◽  
Thanuja G. Ramamoorthy ◽  
Polly Downton ◽  
Nicola Begley ◽  
...  

AbstractMucosal immunity is critical to survival, with huge attention at present due to the Coronovirus pandemic. Epigenetic factors are increasingly recognized as important determinants of immune responses, and EZH2 closest to application due to the availability of highly-specific and efficacious antagonists. However, very little is known about the role of EZH2 in the myeloid lineage, with some conflicting reports. Here we show EZH2 acts in macrophages to limit inflammatory responses to activation, and selective genetic deletion results in a remarkable gain in protection from infection with the prevalent lung pathogen, pneumococcus. In contrast, EZH2 is required for neutrophil chemotaxis, and animals lacking neutrophil EZH2 show increased susceptibility to pneumococcus. In summary, EZH2 shows complex, and divergent roles in different myeloid cells, likely contributing to the earlier conflicting reports. Compounds targeting EZH2 are likely to impair mucosal immunity, however, may prove useful for conditions driven by pulmonary neutrophil influx, such as adult respiratory distress syndrome (ARDS).DigestEpigenetic control of mucosal immunity is important, and has translational relevance with the advent of inhibitor drugs now in the clinic for cancer indications. Here we show divergent role for EZH2 in macrophages and neutrophils. Loss of EZH2 in macrophages results in a gain of inflammatory and immune function, and protection from pneumonia. However, EZH2 is required for neutrophil chemotaxis, resulting in impaired anti-bacterial defence. We show that inhibition, or loss of EZH2 in macrophages results in a gain of immune function, with increased responses to infectious mimics such as LPS. However, the impact was far more dramatic in-vivo, with striking protection from the consequences of infection with pneumococcal bacteria. Loss of EZH2 resulted in a gain in activity of a number of inflammatory signaling cascades, including NFkB, PPARg, and IRFs1, and 7. This widespread macrophage re-programming varied between macrophages sites of origin, with the greatest impact seen in peritoneal macrophages which resulted in emergence of a new population of MerTK low cells. In contrast, in the neutrophils loss of EZH2 greatly impairs motility, and chemotaxis. This results in dramatic impairment of immune responses to the same pneumococcal infection. Extension of these studies to the mucosal epithelium revealed that EZH2 in bronchoalveolar epithelial cells had no impact on responses to infection with influenza. Taken together EZH2 plays diverse roles in the myeloid lineage, with profound impacts on inflammatory responses. The most striking observation was the difference seen between macrophages and neutrophils. EZH2 inhibition is likely to greatly impair mucosal immunity.Impact StatementHere we show a striking, but highly cell-type specific impact of the EZH2 methyltransferase on inflammatory, and anti-infective circuits; inhibition of EZH2 in macrophages augments macrophage cytokine production, but by impairing neutrophil migration impairs anti-bacterial responses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathaniel B. Bone ◽  
Eugene J. Becker ◽  
Maroof Husain ◽  
Shaoning Jiang ◽  
Anna A. Zmijewska ◽  
...  

AbstractMetabolic and bioenergetic plasticity of immune cells is essential for optimal responses to bacterial infections. AMPK and Parkin ubiquitin ligase are known to regulate mitochondrial quality control mitophagy that prevents unwanted inflammatory responses. However, it is not known if this evolutionarily conserved mechanism has been coopted by the host immune defense to eradicate bacterial pathogens and influence post-sepsis immunosuppression. Parkin, AMPK levels, and the effects of AMPK activators were investigated in human leukocytes from sepsis survivors as well as wild type and Park2−/− murine macrophages. In vivo, the impact of AMPK and Parkin was determined in mice subjected to polymicrobial intra-abdominal sepsis and secondary lung bacterial infections. Mice were treated with metformin during established immunosuppression. We showed that bacteria and mitochondria share mechanisms of autophagic killing/clearance triggered by sentinel events that involve depolarization of mitochondria and recruitment of Parkin in macrophages. Parkin-deficient mice/macrophages fail to form phagolysosomes and kill bacteria. This impairment of host defense is seen in the context of sepsis-induced immunosuppression with decreased levels of Parkin. AMPK activators, including metformin, stimulate Parkin-independent autophagy and bacterial killing in leukocytes from post-shock patients and in lungs of sepsis-immunosuppressed mice. Our results support a dual role of Parkin and AMPK in the clearance of dysfunctional mitochondria and killing of pathogenic bacteria, and explain the immunosuppressive phenotype associated Parkin and AMPK deficiency. AMPK activation appeared to be a crucial therapeutic target for the macrophage immunosuppressive phenotype and to reduce severity of secondary bacterial lung infections and respiratory failure.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anderson B. Guimaraes-Costa ◽  
John P. Shannon ◽  
Ingrid Waclawiak ◽  
Jullyanna Oliveira ◽  
Claudio Meneses ◽  
...  

AbstractApart from bacterial formyl peptides or viral chemokine mimicry, a non-vertebrate or insect protein that directly attracts mammalian innate cells such as neutrophils has not been molecularly characterized. Here, we show that members of sand fly yellow salivary proteins induce in vitro chemotaxis of mouse, canine and human neutrophils in transwell migration or EZ-TAXIScan assays. We demonstrate murine neutrophil recruitment in vivo using flow cytometry and two-photon intravital microscopy in Lysozyme-M-eGFP transgenic mice. We establish that the structure of this ~ 45 kDa neutrophil chemotactic protein does not resemble that of known chemokines. This chemoattractant acts through a G-protein-coupled receptor and is dependent on calcium influx. Of significance, this chemoattractant protein enhances lesion pathology (P < 0.0001) and increases parasite burden (P < 0.001) in mice upon co-injection with Leishmania parasites, underlining the impact of the sand fly salivary yellow proteins on disease outcome. These findings show that some arthropod vector-derived factors, such as this chemotactic salivary protein, activate rather than inhibit the host innate immune response, and that pathogens take advantage of these inflammatory responses to establish in the host.


2014 ◽  
Vol 112 (11) ◽  
pp. 951-959 ◽  
Author(s):  
Morten Eriksen ◽  
Arnfinn Ilebekk ◽  
Alessandro Cataliotti ◽  
Cathrine Rein Carlson ◽  
Torstein Lyberg ◽  
...  

SummaryBradykinin (BK) receptor-2 (B2R) and β2-adrenergic receptor (β2AR) have been shown to form heterodimers in vitro. However, in vivo proofs of the functional effects of B2R-β2AR heterodimerisation are missing. Both BK and adrenergic stimulation are known inducers of tPA release. Our goal was to demonstrate the existence of B2R-β2AR heterodimerisation in myocardium and to define its functional effect on cardiac release of tPA in vivo. We further investigated the effects of a non-selective β-blocker on this receptor interplay. To investigate functional effects of B2R-β2AR heterodimerisation (i. e. BK transactivation of β2AR) in vivo, we induced serial electrical stimulation of cardiac sympathetic nerves (SS) in normal pigs that underwent concomitant BK infusion. Both SS and BK alone induced increases in cardiac tPA release. Importantly, despite B2R desensitisation, simultaneous BK infusion and SS (BK+SS) was characterised by 2.3 ± 0.3-fold enhanced tPA release compared to SS alone. When β-blockade (propranolol) was introduced prior to BK+SS, tPA release was inhibited. A persistent B2R-β2AR heterodimer was confirmed in BK-stimulated and nonstimulated left ventricular myocardium by immunoprecipitation studies and under non-reducing gel conditions. All together, these results strongly suggest BK transactivation of β2AR leading to enhanced β2AR-mediated release of tPA. Importantly, non-selective β-blockade inhibits both SS-induced release of tPA and the functional effects of B2R-β2AR heterodimerisation in vivo, which may have important clinical implications.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 629
Author(s):  
Megan M. Dunagan ◽  
Kala Hardy ◽  
Toru Takimoto

Influenza A virus (IAV) is a significant human pathogen that causes seasonal epidemics. Although various types of vaccines are available, IAVs still circulate among human populations, possibly due to their ability to circumvent host immune responses. IAV expresses two host shutoff proteins, PA-X and NS1, which antagonize the host innate immune response. By transcriptomic analysis, we previously showed that PA-X is a major contributor for general shutoff, while shutoff active NS1 specifically inhibits the expression of host cytokines, MHC molecules, and genes involved in innate immunity in cultured human cells. So far, the impact of these shutoff proteins in the acquired immune response in vivo has not been determined in detail. In this study, we analyzed the effects of PA-X and NS1 shutoff activities on immune response using recombinant influenza A/California/04/2009 viruses containing mutations affecting the expression of shutoff active PA-X and NS1 in a mouse model. Our data indicate that the virus without shutoff activities induced the strongest T and B cell responses. Both PA-X and NS1 reduced host immune responses, but shutoff active NS1 most effectively suppressed lymphocyte migration to the lungs, antibody production, and the generation of IAV specific CD4+ and CD8+ T cells. NS1 also prevented the generation of protective immunity against a heterologous virus challenge. These data indicate that shutoff active NS1 plays a major role in suppressing host immune responses against IAV infection.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Se Eun Byeon ◽  
Young-Su Yi ◽  
Jueun Oh ◽  
Byong Chul Yoo ◽  
Sungyoul Hong ◽  
...  

Src kinase (Src) is a tyrosine protein kinase that regulates cellular metabolism, survival, and proliferation. Many studies have shown that Src plays multiple roles in macrophage-mediated innate immunity, such as phagocytosis, the production of inflammatory cytokines/mediators, and the induction of cellular migration, which strongly implies that Src plays a pivotal role in the functional activation of macrophages. Macrophages are involved in a variety of immune responses and in inflammatory diseases including rheumatoid arthritis, atherosclerosis, diabetes, obesity, cancer, and osteoporosis. Previous studies have suggested roles for Src in macrophage-mediated inflammatory responses; however, recently, new functions for Src have been reported, implying that Src functions in macrophage-mediated inflammatory responses that have not been described. In this paper, we discuss recent studies regarding a number of these newly defined functions of Src in macrophage-mediated inflammatory responses. Moreover, we discuss the feasibility of Src as a target for the development of new pharmaceutical drugs to treat macrophage-mediated inflammatory diseases. We provide insights into recent reports regarding new functions for Src that are related to macrophage-related inflammatory responses and the development of novel Src inhibitors with strong immunosuppressive and anti-inflammatory properties, which could be applied to various macrophage-mediated inflammatory diseases.


1999 ◽  
Vol 189 (8) ◽  
pp. 1285-1294 ◽  
Author(s):  
Laurie L. Hill ◽  
Vijay K. Shreedhar ◽  
Margaret L. Kripke ◽  
Laurie B. Owen-Schaub

Induction of antigen-specific suppression elicited by environmental insults, such as ultraviolet (UV)-B radiation in sunlight, can inhibit an effective immune response in vivo and may contribute to the outgrowth of UV-induced skin cancer. Although UV-induced DNA damage is known to be an initiating event in the immune suppression of most antigen responses, the underlying mechanism(s) of such suppression remain undefined. In this report, we document that Fas ligand (FasL) is critical for UV-induced systemic immune suppression. Normal mice acutely exposed to UV exhibit a profound suppression of both contact hypersensitivity and delayed type hypersensitivity (DTH) reactions and the development of transferable antigen-specific suppressor cells. FasL-deficient mice exposed to UV lack both transferable suppressor cell activity and primary suppression to all antigens tested, with the exception of the DTH response to allogeneic spleen cells. Interestingly, suppression of this response is also known to occur independently of UV-induced DNA damage. Delivery of alloantigen as protein, rather than intact cells, restored the requirement for FasL in UV-induced immune suppression of this response. These results substantiate that FasL/Fas interactions are essential for systemic UV-induced suppression of immune responses that involve host antigen presentation and suggest an interrelationship between UV-induced DNA damage and FasL in this phenomenon. Collectively, our results suggest a model whereby UV-induced DNA damage disarms the immune system in a manner similar to that observed in immunologically privileged sites.


2021 ◽  
Author(s):  
Anuj K Yadav ◽  
Michael C. Lee ◽  
Melissa Lucero ◽  
Christopher J. Reinhardt ◽  
ShengZhang Su ◽  
...  

<p>Nitric oxide (NO) plays a critical role in acute and chronic inflammation. NO’s contributions to cancer are of particular interest due to its context-dependent bioactivities. For example, immune cells initially produce cytotoxic quantities of NO in response to the nascent tumor. However, it is believed that this fades over time and reaches a concentration that supports the tumor microenvironment (TME). These complex dynamics are further complicated by other factors, such as diet and oxygenation, making it challenging to establish a complete picture of NO’s impact on tumor progression. Although many activity-based sensing (ABS) probes for NO have been developed, only a small fraction have been employed <i>in vivo </i>and fewer yet are practical in cancer models where the NO concentration is < 200 nM. To overcome this outstanding challenge, we have developed BL<sub>660</sub>-NO, the first ABS probe for NIR bioluminescence imaging of NO in cancer. Owing to the low intrinsic background, high sensitivity, and deep tissue imaging capabilities of our design, BL<sub>660</sub>-NO was successfully employed to visualize endogenous NO in cellular systems, a human liver metastasis model, and a murine breast cancer model. Importantly, its exceptional performance facilitated the design of a dietary study to examine the impact of NO on the TME by varying the intake of fat. BL<sub>660</sub>-NO provides the first direct molecular evidence that intratumoral NO becomes elevated in mice fed a high-fat diet who became obese with larger tumors compared to control animals on a low-fat diet. These results indicate that an inflammatory diet can increase NO production via recruitment of macrophages and overexpression of iNOS which in turn can drive tumor progression.<br></p>


2021 ◽  
Author(s):  
Qiuhua Yang ◽  
Jiean Xu ◽  
Qian Ma ◽  
Zhiping Liu ◽  
Yaqi Zhou ◽  
...  

Overnutrition-induced endothelial inflammation plays a crucial role in high fat diet (HFD)-induced insulin resistance in animals. Endothelial glycolysis plays a critical role in endothelial inflammation and proliferation, but its role in diet-induced endothelial inflammation and subsequent insulin resistance has not been elucidated. PFKFB3 is a critical glycolytic regulator, and its increased expression has been observed in adipose vascular endothelium of C57BL/6J mice fed with HFD in vivo, and in palmitate (PA)-treated primary human adipose microvascular endothelial cells (HAMECs) in vitro. We generated mice with Pfkfb3 deficiency selective for endothelial cells to examine the effect of endothelial Pfkfb3 in endothelial inflammation in metabolic organs and in the development of HFD-induced insulin resistance. EC Pfkfb3-deficient mice exhibited mitigated HFD-induced insulin resistance, including decreased body weight and fat mass, improved glucose clearance and insulin sensitivity, and alleviated adiposity and hepatic steatosis. Mechanistically, cultured PFKFB3 knockdown HAMECs showed decreased NF-κB activation induced by PA, and consequent suppressed adhesion molecule expression and monocyte adhesion. Taken together, these results demonstrate that increased endothelial PFKFB3 expression promotes diet-induced inflammatory responses and subsequent insulin resistance, suggesting that endothelial metabolic alteration plays an important role in the development of insulin resistance.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2630 ◽  
Author(s):  
Isabel Gálvez ◽  
Leticia Martín-Cordero ◽  
María Dolores Hinchado ◽  
Alberto Álvarez-Barrientos ◽  
Eduardo Ortega

Anomalous immune/inflammatory responses in obesity take place along with alterations in the neuroendocrine responses and dysregulation in the immune/stress feedback mechanisms. Exercise is a potential anti-inflammatory strategy in this context, but the influence of exercise on the β2 adrenergic regulation of the monocyte-mediated inflammatory response in obesity remains completely unknown. The first objective of this study was to analyze the effect of exercise on the inflammatory profile and phenotype of monocytes from obese and lean animals, and the second aim was to determine whether obesity could affect monocytes’ inflammatory response to β2 adrenergic activation in exercised animals. C57BL/6J mice were allocated to different lean or obese groups: sedentary, with acute exercise, or with regular exercise. The inflammatory profile and phenotype of their circulating monocytes were evaluated by flow cytometry in the presence or absence of the selective β2 adrenergic receptor agonist terbutaline. Exercise caused an anti-inflammatory effect in obese individuals and a pro-inflammatory effect in lean individuals. β2 adrenergic receptor stimulation exerted a global pro-inflammatory effect in monocytes from exercised obese animals and an anti-inflammatory effect in monocytes from exercised lean animals. Thus, β2 adrenergic regulation of inflammation in monocytes from exercised animals seems to depend on the inflammatory basal set-point.


Sign in / Sign up

Export Citation Format

Share Document