Abstract 17333: Myeloid-Specific Deletion of Epsins 1 and 2 Reduces Atherosclerosis by Preventing LRP-1 Downregulation

Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Hong Chen ◽  
Megan Brophy

Introduction: Atherosclerosis is in part caused by immune and inflammatory cell infiltration into the vascular wall, leading to enhanced inflammation and lipid accumulation in the aortic endothelium. Understanding the molecular mechanisms underlying this disease is critical for the development of new therapies. Our recent studies demonstrate that epsins, a family of ubiquitin-binding endocytic adaptors, are critical regulators of atherogenicity. Given the fundamental contribution lesion macrophages make to fuel atherosclerosis, whether and how myeloid specific epsins promote atherogenesis is an open and significant question. Hypothesis: We hypothesize that myeloid specific epsins regulate lesion macrophage function during atherosclerosis. Methods and Results: We engineered myeloid cell-specific epsins double knockout mice (LysM-DKO)on an ApoE -/- background. On Western diet, these mice exhibited marked decrease in atherosclerotic lesion formation, diminished immune and inflammatory cell content in aortas, and reduced necrotic core content but increased smooth muscle cell content in aortic root sections.Epsins deficiency hindered foam cell formation and suppressed the pro-inflammatory macrophage phenotype but increased efferocytosis and the anti-inflammatory macrophage phenotype in primary macrophages.Mechanistically, we show that epsins loss specifically increased total and surface levels of LRP-1, an efferocytosis receptor with anti-atherosclerotic properties. We further show thatepsin and LRP-1 interact via epsin’s Ubiquitin Interacting Motif (UIM) domain. Oxidized LDL treatment increased LRP-1 ubiquitination and subsequent binding to epsin while mutation of cytoplasmic lysine residues attenuated LRP-1 ubiquitination, suggesting that epsins promote the ubiquitin-dependent internalization and downregulation of LRP-1. Crossing ApoE -/- /LysM-DKO mice onto a LRP-1 heterozygous background restored, in part, atherosclerosis, suggesting that epsin-mediated LRP-1 downregulation in macrophages plays a pivotal role in propelling atherogenesis. Conclusions: Myeloid epsins promote atherogenesis by facilitating pro-inflammatory macrophage recruitment and inhibiting efferocytosis in part by downregulating LRP-1, implicating that targeting epsins in macrophages may serve as a novel therapeutic strategy to treat atherosclerosis. Key words: epsin, macrophage, atherosclerosis, LRP-1, inflammation, efferocytosis

2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Megan L Brophy ◽  
Yunzhou Dong ◽  
Hao Wu ◽  
Kai Song ◽  
Ashiqur Rahman ◽  
...  

Background: Atherosclerosis is caused by the immune and inflammatory cell infiltration of the vascular wall, leading to enhanced inflammation and lipid accumulation. Understanding the molecular mechanisms underlying this disease is critical for the development of new therapies. Our recently studies demonstrate that endothelial epsins, a family of ubiquitin-binding endocytic adaptors are critical regulators of atherosclerosis. However, whether epsins in macrophages play a role in regulating vascular inflammation is unknown. We hypothesize that epsins in macrophages promote inflammation to facilitate atherogenesis. Methods and Results: We engineered myeloid cell-specific epsins double knockout mice (MΦ-DKO) on an ApoE-/- background fed western diet. Strikingly, these mice exhibited reduced atherosclerotic lesion formation, diminished immune and inflammatory cell recruitment to aortas and reduced cleaved caspase 3 staining but increased α-SMA staining within aortic root sections. Epsin deficiency hindered foam cell formation, suppressed the pro-inflammatory M1 macrophage phenotype but increased the anti-inflammatory macrophage phenotype, and enhanced efferocytosis in primary macrophages. Mechanistically, we show that epsin loss specifically increases total and surface levels of LRP-1, a protein with anti-inflammatory properties without altering levels of LDL scavenger receptors. We further show that epsin and LRP-1 interact via epsin’s UIM domain. Oxidized LDL treatment increased LRP-1 ubiquitination and subsequent binding to epsin while mutation of cytoplasmic lysine residues attenuated LRP-1 ubiquitination, suggesting that epsin promotes the ubiquitin-dependent internalization and degradation of LRP-1. Importantly, MΦ-DKO/ApoE null mice on LRP-1 heterozygous background restored atherosclerosis, suggesting that epsin-mediated LRP-1 downregulation in macrophages plays a pivotal role in propelling atherogenesis. Conclusions: Macrophage epsins promote atherogenesis, in part, by facilitating pro-inflammatory macrophage recruitment and potentiating foam cell formation by downregulating LRP-1, implicating that targeting epsin in macrophages may serve as a novel therapeutic strategy to treat atheroma.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Megan L Brophy ◽  
Ashiqur Rahman ◽  
Yunzhou Dong ◽  
Hao Wu ◽  
Kandice L Tessneer ◽  
...  

Background: Atherosclerosis is caused by the chronic activation of the vascular endothelium and immune and inflammatory cell infiltration of the vascular wall, leading to enhanced inflammation and lipid accumulation. Understanding the molecular mechanisms underlying this disease is critical for the development of new therapies. Epsins are a family of ubiquitin-binding endocytic adaptors. However, their role in vascular inflammation is poorly understood. Our goal is to define the novel role of epsins in regulating atherogenesis. Methods and Results: We engineered mice with specific deletion of epsins in myeloid cells (MΦ-DKO). Strikingly, MΦ-DKO mice on an ApoE-/- background fed western diet exhibited reduced atherosclerotic lesion and foam cell accumulation, and diminished recruitment of immune or inflammatory cells to aortas by FACS analysis. In primary macrophages, epsin deficiency impaired foam cell formation by Oil Red O staining, and suppressed the pro-inflammatory M1 macrophage phenotype but increased the anti-inflammatory macrophage phenotype by gene profiling. Epsin deficiency did not alter levels of LDL scavenger receptors, or reverse cholesterol transport proteins, but did increase total and surface levels of LRP-1, a protein with anti-inflammatory and anti-atherosclerotic properties. Mechanistically, Epsin interacts with LRP-1 via epsin’s UIM domain. LPS treatment increased LRP-1 ubiquitination and subsequent binding to epsin, suggesting that epsin promotes the ubiquitin-dependent internalization and degradation of LRP-1. Accordingly, macrophages isolated from MΦ-DKO mice on LRP-1 heterozygous background restored the pro-inflammatory phenotype. Conclusions: Epsins promote atherogenesis by facilitating pro-inflammatory macrophage recruitment and potentiating foam cell formation by downregulating LRP-1 implicating that targeting the epsin-LRP-1 interaction may serve as a novel therapeutic strategy to treat atheromas.


2011 ◽  
Vol 106 (11) ◽  
pp. 763-771 ◽  
Author(s):  
Ine Wolfs ◽  
Marjo Donners ◽  
Menno de Winther

SummaryThe phenotype of macrophages in atherosclerotic lesions can vary dramatically, from a large lipid laden foam cell to a small inflammatory cell. Classically, the concept of macrophage heterogeneity discriminates between two extremes called either pro-inflammatory M1 macrophages or anti-inflammatory M2 macrophages. Polarisation of plaque macrophages is predominantly determined by the local micro-environment present in the atherosclerotic lesion and is rather more complex than typically described by the M1/M2 paradigm. In this review we will discuss the role of various polarising factors in regulating the phenotypical state of plaque macrophages. We will focus on two main levels of phenotype regulation, one determined by differentiation factors produced in the lesion and the other determined by T-cell-derived polarising cytokines. With foam cell formation being a key characteristic of macrophages during atherosclerosis initiation and progression, these polarisation factors will also be linked to lipid handling of macrophages.


2021 ◽  
Author(s):  
Junnian Zheng ◽  
Renjin Chen ◽  
Xuemei Xian ◽  
xiaoqiang Zhan ◽  
Jiajia Chang ◽  
...  

Abstract Background:Atherosclerosis is a chronic inflammatory disease, caused by accumulation of lipid-laden and inflammatory macrophages in the artery wall. Understanding its molecular mechanisms and developing novel therapeutic targets to promote atherosclerotic regression is an important clinical goal.Methods : ApoE-/- and eIF6+/-/ApoE-/- mice were fed Western diet (WD) for 16 weeks. Molecular biology technology were performed to analyze the differences between them.Results: The mechanism by which Eukaryotic initiation factor 6 (eIF6) affects macrophages and atherosclerosis remains to be elucidated. Western blotting and real-time polymerase chain reaction (PCR ) analysis indicated significantly higher expression levels of eIF6 than those in the control in RAW264.7 cells induced by Lipopolysaccharide (LPS) and Interleukin-4 (IL4). We constructed eIF6+/-/ApoE-/- mice, the hematoxylin (HE) and Oil Red O staining analysis indicated that these mice showed a significant decrease in atherosclerotic lesion formation increased anti-inflammatory cell content in aortas, and reduced necrotic core content compared with ApoE-/- mice on a western diet for 16 weeks. eIF6 deficiency suppressed foam cell formation and promoted the anti-inflammatory macrophage phenotype in primary macrophages. More anti-inflammatory populations were observed in blood and atherosclerotic aortas of eIF6+/- ApoE-/- mice by flow cytometry. Immunofluorescent staining analysis obtained the same results.Conclusions: eIF6 deficiency protects against atherosclerosis by promoting the anti-inflammatory macrophage phenotype and reducing macrophage uptake of low-density lipoprotein (LDL), indicating that new insight into eIF6 may reveal a potential novel therapeutic target for the resolution of inflammation in atherosclerosis.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Huan Tao ◽  
Patricia G Yancey ◽  
John L Blakemore ◽  
Youmin Zhang ◽  
Lei Ding ◽  
...  

Background: Autophagy modulates vascular cell lipid metabolism, lipid droplet turnover, foam cell formation, cell survival and death, and inflammation. Scavenger receptor class B type I (SR-BI) deficiency causes impaired lysosome function in macrophages and erythrocytes. Methods and Results: Bone marrow transplantation studies were performed in ApoE and LDLR deficient mice to examine the effects of hematopoietic SR-BI deletion on atherosclerotic lesion autophagy. In addition, in vitro studies compared WT versus SR-BI -/- macrophages. Under conditions of cholesterol induced stress, the mRNA and protein levels of critical autophagy players including ATG5, ATG6/Belcin-1, ATG7 and LC3II were decreased by 37.8% to 84.6% (P<0.05 to 0.01) in SR-B1 -/- macrophages and atherosclerotic aortic tissue compared to controls. Electron microscopic analysis showed that SR-BI -/- versus WT macrophages had 80% fewer (P<0.05) autophagsomes in response to cholesterol enrichment. Macrophage SR-BI deficiency led to 1.8-fold (P<0.05) more lipid deposition and 2.5-fold more (P<0.01) apoptosis in response to oxidized LDL. Furthermore, hematopoietic SR-BI deletion caused 2.3 fold (P<0.05) more cell death in aortic atherosclerotic lesions compared to the WT control. Pharmacologic activation of autophagy did not reduce the levels of lipid droplets or cell apoptosis in SR-BI null macrophages vs WT control. WT peritoneal macrophages were used to examine SR-BI subcellular distribution and its interaction with VPS34/Beclin-1. In response to induction of autophagy, macrophage SR-BI was expressed in lysosomes and co-localized with LC3-II. Furthermore, we found that SR-BI directly interacted with the VPS34/Beclin-1 complex. Conclusions: SR-BI deficiency leads to defective autophagy and accelerates macrophage foam cell formation and apoptosis in experimental mouse atherosclerotic lesions. Macrophage SR-BI regulates expression of critical autophagy players and directly modulates autophagy via the VPS34/Beclin-1 pathway, identifying novel targets for the treatment of atherosclerosis.


2021 ◽  
Vol 7 ◽  
Author(s):  
Torben Mentrup ◽  
Florencia Cabrera-Cabrera ◽  
Bernd Schröder

The lectin-like oxidized-LDL (oxLDL) receptor LOX-1, which is broadly expressed in vascular cells, represents a key mediator of endothelial activation and dysfunction in atherosclerotic plaque development. Being a member of the C-type lectin receptor family, LOX-1 can bind different ligands, with oxLDL being the best characterized. LOX-1 mediates oxLDL uptake into vascular cells and by this means can promote foam cell formation. In addition, LOX-1 triggers multiple signaling pathways, which ultimately induce a pro-atherogenic and pro-fibrotic transcriptional program. However, the molecular mechanisms underlying this signal transduction remain incompletely understood. In this regard, proteolysis has recently emerged as a regulatory mechanism of LOX-1 function. Different proteolytic cleavages within the LOX-1 protein can initiate its turnover and control the cellular levels of this receptor. Thereby, cleavage products with individual biological functions and/or medical significance are produced. Ectodomain shedding leads to the release of a soluble form of the receptor (sLOX1) which has been suggested to have diagnostic potential as a biomarker. Removal of the ectodomain leaves behind a membrane-bound N-terminal fragment (NTF), which despite being devoid of the ligand-binding domain is actively involved in signal transduction. Degradation of this LOX-1 NTF, which represents an athero-protective mechanism, critically depends on the aspartyl intramembrane proteases Signal peptide peptidase-like 2a and b (SPPL2a/b). Here, we present an overview of the biology of LOX-1 focusing on how proteolytic cleavages directly modulate the function of this receptor and, what kind of pathophysiological implications this has in cardiovascular disease.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


Author(s):  
Parimalanandhini Duraisamy ◽  
Sangeetha Ravi ◽  
Mahalakshmi Krishnan ◽  
Catherene M. Livya ◽  
Beulaja Manikandan ◽  
...  

: Atherosclerosis, a major contributor to cardiovascular disease is a global alarm causing mortality worldwide. Being a progressive disease in the arteries, it mainly causes recruitment of monocytes to the inflammatory sites and subside pathological conditions. Monocyte-derived macrophage mainly acts in foam cell formation by engorging the LDL molecules, oxidizes it into Ox-LDL and leads to plaque deposit development. Macrophages in general differentiate, proliferate and undergo apoptosis at the inflammatory site. Frequently two subtypes of macrophages M1 and M2 has to act crucially in balancing the micro-environmental conditions of endothelial cells in arteries. The productions of proinflammatory mediators like IL-1, IL-6, TNF-α by M1 macrophage has atherogenic properties majorly produced during the early progression of atherosclerotic plaques. To counteract cytokine productions and M1-M2 balance, secondary metabolites (phytochemicals) from plants act as a therapeutic agent in alleviating atherosclerosis progression. This review summarizes the fundamental role of the macrophage in atherosclerotic lesion formation along with its plasticity characteristic as well as recent therapeutic strategies using herbal components and anti-inflammatory cytokines as potential immunomodulators.


2021 ◽  
Vol 22 (2) ◽  
pp. 660
Author(s):  
María Aguilar-Ballester ◽  
Gema Hurtado-Genovés ◽  
Alida Taberner-Cortés ◽  
Andrea Herrero-Cervera ◽  
Sergio Martínez-Hervás ◽  
...  

Cardiovascular disease (CVD) is the leading cause of death worldwide and is the clinical manifestation of the atherosclerosis. Elevated LDL-cholesterol levels are the first line of therapy but the increasing prevalence in type 2 diabetes mellitus (T2DM) has positioned the cardiometabolic risk as the most relevant parameter for treatment. Therefore, the control of this risk, characterized by dyslipidemia, hypertension, obesity, and insulin resistance, has become a major goal in many experimental and clinical studies in the context of CVD. In the present review, we summarized experimental studies and clinical trials of recent anti-diabetic and lipid-lowering therapies targeted to reduce CVD. Specifically, incretin-based therapies, sodium-glucose co-transporter 2 inhibitors, and proprotein convertase subtilisin kexin 9 inactivating therapies are described. Moreover, the novel molecular mechanisms explaining the CVD protection of the drugs reviewed here indicate major effects on vascular cells, inflammatory cells, and cardiomyocytes, beyond their expected anti-diabetic and lipid-lowering control. The revealed key mechanism is a prevention of acute cardiovascular events by restraining atherosclerosis at early stages, with decreased leukocyte adhesion, recruitment, and foam cell formation, and increased plaque stability and diminished necrotic core in advanced plaques. These emergent cardiometabolic therapies have a promising future to reduce CVD burden.


2021 ◽  
Vol 400 (1) ◽  
pp. 112507
Author(s):  
Yanyan Qiu ◽  
Jinyi Xu ◽  
Lihong Yang ◽  
Guihua Zhao ◽  
Jing Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document