Abstract 15945: Temporal Analyses of Chromatin Accessibility, Dna Methylation and Epigenomic Structure Identify Mechanisms of Locus-specific Regulation in the Heart

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Manuel Rosa-garrido ◽  
Douglas J Chapski ◽  
Maximilian Cabaj ◽  
Marco Morselli ◽  
Shuxun Ren ◽  
...  

Heart failure can be induced or ameliorated in animal models by regulation of chromatin modifying enzymes, yet the chromatin level actions of these enzymes during pathogenesis is unknown. Because many histone modifiers and transcription factors regulate gene expression, we sought to directly measure chromatin accessibility through an unbiased method (ATAC-seq) that reports the status of a given locus at any time—the sum total of all epigenetic modifiers—in a mouse model of pressure overload hypertrophy. Early compensation of pressure overload at 3 days was associated with widespread changes in chromatin accessibility and DNA methylation, primarily in noncoding regions. The majority of changes that persisted to the decompensated phase (3weeks) were already established at the earlier time point, revealing a temporal nature of epigenomic compensation to pathologic stimuli. A cardiac-specific CTCF depletion model was used to examine basal cardiac chromatin function and revealed that disruption of this structure by loss of CTCF causes widespread changes in accessibility and methylation distinct from those in pressure overload. Less than half of the gene expression changes occurring at either time point after pressure overload were explained by DNA methylation alone and accessibility was likewise an imperfect predictor of transcription. Distal enhancers were paired with genes based on chromatin structural data and the regulatory actions of these elements examined in the context of DNA methylation and accessibility: enhancer actions require specific combinations of transcription factors and histone modifications at different stages of disease and to execute aspecific transcriptional event (methylation or accessibility alone was insufficient to predict the behavior). For example, the subset of differentially accessible enhancers in both 3 weeks TACand CTCF depletion significantly overlaps with cardiac transcription factors Gata4 (p=4.13x10 -6 ),Nkx2-5 (p=2.49x10 -5 ) and P300 (p=8.38x10 -7 ). In summary, these studies characterize the logic employed at coding, regulatory, and noncoding regions to regulate chromatin accessibility and transcription, providing a resource of epigenomic data at distinct temporal stages of heart failure.

2020 ◽  
Author(s):  
Chao Zhang ◽  
Xuebin Zhang ◽  
Yiting Guan ◽  
Xiaoke Huang ◽  
Lijun Zhang ◽  
...  

AbstractChromatin architecture and gene expression profile undergo tremendous reestablishment during senescence. However, the regulatory mechanism between chromatin reconstruction and gene expression in senescence remain elusive. The chromatin accessibility is an excellent perspective to reveal the latent regulatory elements. Thus, we depicted the landscapes of chromatin accessibility and gene expression during HUVECs senescence. We found that chromatin accessibilities are re-distributed during senescence. The senescence related increased accessible regions (IARs) and the decreased accessible regions (DARs) are mainly distributed in distal intergenic regions. The DARs are correlated with the function declines caused by senescence, whereas the IARs are involved in the regulation for senescence program. Moreover, the heterochromatin contributes most of IARs in senescent cells. We identified that the AP-1 transcription factors, especially ATF3 is responsible for driving chromatin accessibility reconstruction in IARs. In particular, DNA methylation is negatively correlated with chromatin accessibility during senescence. AP-1 motifs with low DNA methylation may improve their binding affinity in IARs and further opens the chromatin nearby. Our results described a dynamic landscape of chromatin accessibility whose remodeling contributes to the senescence program. And we identified a cellular senescence regulator, AP-1, which promotes senescence through organizing the accessibility profile in IARs.


2019 ◽  
Author(s):  
Martin Cusack ◽  
Hamish W. King ◽  
Paolo Spingardi ◽  
Benedikt M. Kessler ◽  
Robert J. Klose ◽  
...  

AbstractEpigenetic modifications on chromatin play important roles in regulating gene expression. While chromatin states are often governed by multi-layered structure, how individual pathways contribute to gene expression remains poorly understood. For example, DNA methylation is known to regulate transcription factor binding but also to recruit methyl-CpG binding proteins that affect chromatin structure through the activity of histone deacetylase complexes (HDACs). Both of these mechanisms can potentially affect gene expression, but the importance of each, and whether these activities are integrated to achieve appropriate gene regulation, remains largely unknown. To address this important question, we measured gene expression, chromatin accessibility, and transcription factor occupancy in wild-type or DNA methylation-deficient mouse embryonic stem cells following HDAC inhibition. Interestingly, we observe widespread increases in chromatin accessibility at repeat elements when HDACs are inhibited, and this is magnified when cells also lack DNA methylation. A subset of these elements have elevated binding of the YY1 and GABPA transcription factors and increased expression. The pronounced additive effect of HDAC inhibition in DNA methylation deficient cells demonstrate that DNA methylation and histone deacetylation act largely independently to suppress transcription factor binding and gene expression.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Mark E Pepin ◽  
David K Crossman ◽  
Joseph P Barchue ◽  
Salpy V Pamboukian ◽  
Steven M Pogwizd ◽  
...  

To identify the role of glucose in the development of diabetic cardiomyopathy, we had directly assessed glucose delivery to the intact heart on alterations of DNA methylation and gene expression using both an inducible heart-specific transgene (glucose transporter 4; mG4H) and streptozotocin-induced diabetes (STZ) mouse models. We aimed to determine whether long-lasting diabetic complications arise from prior transient exposure to hyperglycemia via a process termed “glycemic memory.” We had identified DNA methylation changes associated with significant gene expression regulation. Comparing our results from STZ, mG4H, and the modifications which persist following transgene silencing, we now provide evidence for cardiac DNA methylation as a persistent epigenetic mark contributing to glycemic memory. To begin to determine which changes contribute to human heart failure, we measured both RNA transcript levels and whole-genome DNA methylation in heart failure biopsy samples (n = 12) from male patients collected at left ventricular assist device placement using RNA-sequencing and Methylation450 assay, respectively. We hypothesized that epigenetic changes such as DNA methylation distinguish between heart failure etiologies. Our findings demonstrated that type 2 diabetic heart failure patients (n = 6) had an overall signature of hypomethylation, whereas patients listed as ischemic (n = 5) had a distinct hypermethylation signature for regulated transcripts. The focus of this initial analysis was on promoter-associated CpG islands with inverse changes in gene transcript levels, from which diabetes (14 genes; e.g. IGFBP4) and ischemic (12 genes; e.g. PFKFB3) specific targets emerged with significant regulation of both measures. By combining our mouse and human molecular analyses, we provide evidence that diabetes mellitus governs direct regulation of cellular function by DNA methylation and the corresponding gene expression in diabetic mouse and human hearts. Importantly, many of the changes seen in either mouse type 1 diabetes or human type 2 diabetes were similar supporting a consistent mechanism of regulation. These studies are some of the first steps at defining mechanisms of epigenetic regulation in diabetic cardiomyopathy.


2018 ◽  
Vol 115 (48) ◽  
pp. E11321-E11330 ◽  
Author(s):  
Jie Hou ◽  
Xiaowen Shi ◽  
Chen Chen ◽  
Md. Soliman Islam ◽  
Adam F. Johnson ◽  
...  

Changes in dosage of part of the genome (aneuploidy) have long been known to produce much more severe phenotypic consequences than changes in the number of whole genomes (ploidy). To examine the basis of these differences, global gene expression in mature leaf tissue for all five trisomies and in diploids, triploids, and tetraploids of Arabidopsis thaliana was studied. The trisomies displayed a greater spread of expression modulation than the ploidy series. In general, expression of genes on the varied chromosome ranged from compensation to dosage effect, whereas genes from the remainder of the genome ranged from no effect to reduced expression approaching the inverse level of chromosomal imbalance (2/3). Genome-wide DNA methylation was examined in each genotype and found to shift most prominently with trisomy 4 but otherwise exhibited little change, indicating that genetic imbalance is generally mechanistically unrelated to DNA methylation. Independent analysis of gene functional classes demonstrated that ribosomal, proteasomal, and gene body methylated genes were less modulated compared with all classes of genes, whereas transcription factors, signal transduction components, and organelle-targeted protein genes were more tightly inversely affected. Comparing transcription factors and their targets in the trisomies and in expression networks revealed considerable discordance, illustrating that altered regulatory stoichiometry is a major contributor to genetic imbalance. Reanalysis of published data on gene expression in disomic yeast and trisomic mouse cells detected similar stoichiometric effects across broad phylogenetic taxa, and indicated that these effects reflect normal gene regulatory processes.


2019 ◽  
Vol 5 (12) ◽  
pp. eaax8898 ◽  
Author(s):  
Roshane Francis ◽  
Haiyang Guo ◽  
Catherine Streutker ◽  
Musaddeque Ahmed ◽  
Theodora Yung ◽  
...  

Transcription factors (TFs) are spatially and temporally regulated during gut organ specification. Although accumulating evidence shows aberrant reactivation of developmental programs in cancer, little is known about how TFs drive lineage specification in development and cancer. We first defined gastrointestinal tissue–specific chromatin accessibility and gene expression during development, identifying the dynamic epigenetic regulation of SOX family of TFs. We revealed that Sox2 is not only essential for gastric specification, by maintaining chromatin accessibility at forestomach lineage loci, but also sufficient to promote forestomach/esophageal transformation upon Cdx2 deletion. By comparing our gastrointestinal lineage-specific transcriptome to human gastrointestinal cancer data, we found that stomach and intestinal lineage-specific programs are reactivated in Sox2high/Sox9high and Cdx2high cancers, respectively. By analyzing mice deleted for both Sox2 and Sox9, we revealed their potentially redundant roles in both gastric development and cancer, highlighting the importance of developmental lineage programs reactivated by gastrointestinal TFs in cancer.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3562-3562
Author(s):  
Karel Fišer ◽  
Lucie Slámová ◽  
Alena Dobiášová ◽  
Júlia Starková ◽  
Eva Froňková ◽  
...  

Abstract We identified a subset of BCP-ALL with switch towards the monocytic lineage within the first month of treatment (swALL)[Slámová et al Leukemia 2014]. During the switch cells gradually lose CD19 and CD34 expression and acquire CD33 and CD14 positivity. We proved clonal relatedness of switched monocytic blasts with the diagnostic leukemic cells based on identical Ig-TCR rearrangements. SwALL cases are not associated with MLL or BCR/ABL1 aberrancies and lack any known genetic markers of lineage ambiguity (detected by FISH or MLPA). We analyzed transcriptomes of swALL samples at diagnosis (n=4) and at d8 (n=4) where the immunophenotypic switching was already apparent as well as control BCP-ALL (n=4). RNA was isolated form either FACS sorted cells or whole BM when blasts constituted >80% of cells. For RNA-Seq we used Illumina HiSeq 2000 paired-end or single end sequencing. Raw sequencing data were analyzed using adapted protocol from Anders at al [Anders et al Nature Protocols 2013] and custom scripts. For methylome analysis we used Enhanced Reduced Representation Bisulfite Sequencing (ERRBS)[Akalin et al PLoS Genetics 2012]. ERRBS quantitatively measures DNA methylation at ~3M CpGs genome-wide. Samples from swALL at diagnosis (n=7) and at d8 (n=4) and control BCP-ALL (n=4) were processed. Analysis was performed according to [Akalin et al Genome Biology 2012] and followed with custom analysis in R statistical language. Comparison (generalized exact binomial test) of transcriptomes of B-lineage blasts from diagnosis between swALLs and control BCP-ALLs revealed a number of differentially expressed genes. Among 300 most significantly differentially expressed were KLF4, CEBPD, CLEC12A and CLEC12B (upregulated in swALL) and ANXA5, VPREB1, CD9 and IGHG3 (downregulated in swALL). Hierarchical clustering separated not only swALL and control BCP-ALL, but also swALL cells before and during the monocytic switch. Changes in gene expression during lineage switch included downregulation of ITGA6, Id2, EBF1, CD19, CD34, FLT3, MYB, CD79a, BCR, PAX5, GATA3 and TCF3 genes and upregulation of S100A10, AIF1, CD14, CD33, LGALS1, RNF130 and MNDA. When comparing all three cell types (swALL B cell and monocytic blasts and control BCP-ALL blasts) we concentrated on 1) immunophenotype switch markers and 2) lineage related transcription factors (TF): 1) Both markers typical for B cell blasts (CD19, CD34) decreased during the switch. However while CD19 was expressed in swALL at diagnosis at same levels as in control BCP-ALL, CD34 was overexpressed in swALL compared to BCP-ALL at diagnosis. Both monocytic markers (CD33, CD14) increased their expression during the switch. CD14 showed no difference between swALL and control BCP-ALL at diagnosis. However CD33 was interestingly upregulated in swALL already at diagnosis and continued to rise during the switch. SwALL had therefore deregulated expression of lineage commitment markers already at diagnosis favoring stemness marker CD34 and myeloid marker CD33. 2) B lineage commitment related TFs (EBF1, TCF3, PAX5) were expressed in B lineage blasts in both swALL and control BCP-ALL. However they were all downregulated during the switch. On the other hand myeloid lineage related transcription factor CEBPA is overexpressed in diagnostic B lineage blasts in swALL compared to control BCP-ALL cases. Similarly CEBPD is overexpressed in swALL and its expression further rises during the switch. Other hematopoietic TFs upregulated in swALL cases include KLF4, NANOG and GATA3. To confirm some of the epigenetic markers of swALL cases (demethylation of CEBPA promoter) and to widen epigenetic screening we used ERRBS. While some of the upregulated genes had expectedly hypomethylated promoters in swALL (CEBPA, GATA3) other genes (TCF3, PAX5) had demethylated promoters in all cases. While the whole DNA methylation picture is still a challenge to draw both omics method could clearly separate swALL cases from control BCP-ALL using principal component analysis. In summary we show that immunophenotypic shift is associated with gene expression changes of surface markers, lineage specific transcription factors and other genes. Some of the genes have altered expression already at diagnosis. Expression of some key lineage genes is differentially regulated by DNA methylation. Supported by: GAUK 914613, GAČR P301/10/1877, UNCE 204012, IGA NT13462-4 Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 8 ◽  
Author(s):  
Weijiang Tan ◽  
Xiang Li ◽  
Shuang Zheng ◽  
Xiaohui Li ◽  
Xiaoshen Zhang ◽  
...  

Heart failure is induced by multiple pathological mechanisms, and current therapies are ineffective against heart failure with preserved ejection fraction (HFpEF). As there are limited animal models of HFpEF, its underlying mechanisms have not yet been elucidated. Here, we employed the descending aortic constriction (DAC) technique to induce chronic pressure overload in the left ventricles of Tibetan minipigs for 12 weeks. Cardiac function, pathological and cellular changes, fibrotic signaling activation, and gene expression profiles were explored. The left ventricles developed concentric hypertrophy from weeks 4 to 6 and transition to dilation starting in week 10. Notably, the left ventricular ejection fraction was maintained at >50% in the DAC group during the 12-week period. Pathological examination, biochemical analyses, and gene profile analysis revealed evidence of inflammation, fibrosis, cell death, and myofilament dephosphorylation in the myocardium of HFpEF model animals, together with gene expression shifts promoting cardiac remodeling and downregulating metabolic pathways. Furthermore, we noted the activation of several signaling proteins that impact cardiac fibrosis and remodeling, including transforming growth factor-β/SMAD family members 2/3, type I/III/V collagens, phosphatidylinositol 3-kinase, extracellular signal-regulated kinase, matrix metalloproteinases 2 and 9, tissue inhibitor of metalloproteinases 1 and 2, interleukins 6 and 1β, and inhibitor of κBα/nuclear factor-κB. Our findings demonstrate that this chronic pressure overload-induced porcine HFpEF model is a powerful tool to elucidate the mechanisms of this disease and translate preclinical findings.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3889-3889
Author(s):  
Anca Franzini ◽  
Jamshid S Khorashad ◽  
Hein Than ◽  
Anthony D. Pomicter ◽  
Dongqing Yan ◽  
...  

Abstract Chronic myelomonocytic leukemia (CMML) is a genetically heterogeneous hematopoietic stem cell disorder that combines features of a myelodysplastic syndrome and a myeloproliferative neoplasm and exhibits a strong bias towards older age. The prognosis of CMML is poor, with overall survival of less than 3 years in most studies, however recurrent somatic mutations explain only 15-24% of the clinical heterogeneity of CMML (Elena C. et al. Blood 128:1408-17, 2016). The extreme skewing of the CMML age distribution suggests that CMML reflects the malignant conversion of the myelomonocytic-biased differentiation characteristic of an aged hematopoietic system. We hypothesized that separating the contribution of the normal aging process from bona fide CMML-specific alterations will improve the molecular characterization and biological understanding of CMML. We decided to focus on monocytes as the phenotypic minimal common denominator of genetically heterogeneous diseases. CD14+ monocytes were sorted from the blood of untreated CMML patients (N=12, median age 77 years, range 61-90), age-matched healthy controls (old controls: N=12, median age 68 years, range 62-74) and young healthy controls (young controls: N=16, median age 29 years, range 24-44) and subjected to RNA sequencing and DNA methylation profiling. Differentially expressed genes in CMML monocytes compared to healthy controls were identified with DESeq2 using a 1% false discovery rate (FDR) and a fold-change cutoff set at >│2│ (Figure 1A). We identified the 2480 CMML-specific genes by subtracting all genes with significant differences in the young controls vs. old controls comparison from the CMML vs. old controls comparison. The top-25 most significantly upregulated genes (Figure 1B) included transcription factors, TNFα signaling genes, genes that regulate genomic stability, and genes involved in apoptosis. The most significantly downregulated transcripts were genes involved in response to DNA damage, RNA binding, monocyte differentiation and mediators of inflammatory process. To link these observations to function, we imputed the 2480 CMML-specific differentially expressed genes into the ingenuity pathway analysis (IPA) application. This analysis uncovered significant enrichment of pathways involved in: mitotic roles of Polo-like kinase, G2/M DNA damage checkpoint regulation, lymphotoxin β receptor signaling, IL-6 signaling and ATM signaling (Figure 1C). DNA methylation profiling revealed 909 differentially methylated regions (DMRs) between CMML and age-matched controls, with most regions being hypermethylated in CMML monocytes. Of these, 37% of the DMRs were intronic, 22% were exonic, 14 % were in the promoter region (Figure 1D), 10% were downstream, 10% were upstream, the remainder were 3' and 5'-overlaps. We also performed integrated analysis using the promoter DMRs and the gene expression profile to identify CMML-associated genes that are likely to be regulated by specific changes in methylation. We observed concomitant changes in CMML-specific mRNA transcripts and DNA methylation promoter regions in the CMML vs. old controls contrast for 10 genes (Figure 1E). AOAH, SERINC5, TAF3 and AHCYL1 were downregulated and hypermethylated; MS4A3, TNF, VCAM1, and IFT80, were upregulated and hypermethylated; TUBA1B was upregulated and hypomethylated and PITPNA was downregulated and hypomethylated. Our study is the first to combine transcriptional and methylation profiling for molecular characterization of CMML monocytes. Conclusions: (i) age-related gene expression changes contribute significantly to the CMML transcriptome; (ii) the CMML-specific transcriptome is characterized by differential regulation of transcription factors, inflammatory response genes and anti-apoptotic pathway genes; (iii) differences in promoter methylation represent only a small proportion of overall differences in methylation, suggesting that intragenic or intronic methylation is a major contributor to the leukemic phenotype; (iv) age-related changes may be necessary, but are not sufficient to realize the CMML phenotype. Figure 1. Figure 1. Disclosures Deininger: Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Blueprint: Consultancy.


2020 ◽  
Author(s):  
Ada Admin ◽  
Anita Bansal ◽  
Sreeram Balasubramanian ◽  
Sangeeta Dhawan ◽  
Amy Leung ◽  
...  

Diabetic kidney disease (DKD) is a major complication of diabetes and the leading cause of end-stage renal failure. Epigenetics has been associated with metabolic memory, in which prior periods of hyperglycemia enhance the future risk of developing DKD despite subsequent glycemic control. To understand the mechanistic role of such epigenetic memory in human DKD and identify new therapeutic targets, we profiled gene expression, DNA methylation, and chromatin accessibility in kidney proximal tubule epithelial cells (PTECs) derived from non-diabetic and Type-2 diabetic (T2D) subjects. T2D-PTECs displayed persistent gene expression and epigenetic changes with and without TGFβ1 treatment, even after culturing <i>in vitro</i> under similar conditions as non-diabetic PTECs, signified by deregulation of fibrotic and transport associated genes (TAGs). Motif-analysis of differential DNA methylation and chromatin accessibility regions associated with genes differentially regulated in T2D revealed enrichment for SMAD3, HNF4A, and CTCF transcription factor binding sites. Furthermore, the downregulation of several TAGs in T2D (including <i>CLDN10</i>, <i>CLDN14</i>, <i>CLDN16</i>, <i>SLC16A2</i>, <i>SLC16A5</i>) was associated with promoter hypermethylation, decreased chromatin accessibility and reduced enrichment of HNF4A, histone H3-lysine-27-acetylation, and CTCF. Together, these integrative analyses reveal epigenetic memory underlying the deregulation of key target genes in T2D-PTECs that may contribute to sustained renal dysfunction in DKD.


Sign in / Sign up

Export Citation Format

Share Document