scholarly journals Role of CyPA in cardiac hypertrophy and remodeling

2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Mengfei Cao ◽  
Wei Yuan ◽  
Meiling Peng ◽  
Ziqi Mao ◽  
Qianru Zhao ◽  
...  

Abstract Pathological cardiac hypertrophy is a complex process and eventually develops into heart failure, in which the heart responds to various intrinsic or external stress, involving increased interstitial fibrosis, cell death and cardiac dysfunction. Studies have shown that oxidative stress is an important mechanism for this maladaptation. Cyclophilin A (CyPA) is a member of the cyclophilin (CyPs) family. Many cells secrete CyPA to the outside of the cells in response to oxidative stress. CyPA from blood vessels and the heart itself participate in a variety of signaling pathways to regulate the production of reactive oxygen species (ROS) and mediate inflammation, promote cardiomyocyte hypertrophy and proliferation of cardiac fibroblasts, stimulate endothelial injury and vascular smooth muscle hyperplasia, and promote the dissolution of extracellular matrix (ECM) by activating matrix metalloproteinases (MMPs). The events triggered by CyPA cause a decline of diastolic and systolic function and finally lead to the occurrence of heart failure. This article aims to introduce the role and mechanism of CyPA in cardiac hypertrophy and remodeling, and highlights its potential role as a disease biomarker and therapeutic target.

2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Bing Zhang ◽  
Yanzhen Tan ◽  
Zhengbin Zhang ◽  
Pan Feng ◽  
Wenyuan Ding ◽  
...  

Mitochondrial unfolding protein response (UPRmt) effectively resists the pathological cardiac hypertrophy and improves the mitochondrial function. However, the specific activation mechanism and drugs that can effectively activate UPRmt in the cardiac muscle are yet to be elucidated. The aim of this study was to determine the regulation role of UPRmt on preventing pathological cardiac hypertrophy by tetrahydrocurcumin (THC) and explore its underlying molecular mechanism. Male C57BL/6J wild-type (WT) mice were divided into a control group and subjected to sham treatment for 4 weeks, and a test group which was subjected to transverse aortic constriction (TAC) surgery. Animals in the control and test group were orally administered THC (50 mg/kg) for 4 weeks after TAC procedure; an equivalent amount of saline was orally administered in the control sham-treated group and the TAC group. Subsequently, oxidative stress and UPRmt markers were assessed in these mice, and cardiac hypertrophy, fibrosis, and cardiac function were tested. Small interfering RNA (siRNA) targeting proliferator-activated receptor-gamma coactivator (PGC)-1α and activating transcription factor 5 (ATF5) were used to determine the UPRmt activation mechanism. THC supplement partly upregulated UPRmt effectors and inhibited TAC-induced oxidative stress compared with TAC-operated WT mice, thereby substantially attenuating contractile dysfunction, cardiac hypertrophy, and fibrosis. Furthermore, PGC-1α knockdown blunted the UPRmt activation and the cardioprotective role of THC. The interaction between PGC-1α and ATF5 was tested in neonatal rat cardiac myocytes under normal conditions. The results showed that PGC-1α was an upstream effector of ATF5 and partly activated UPRmt. In vitro, phenylephrine- (PE-) induced cardiomyocyte hypertrophy caused ATF5 upregulating rather than downregulating corresponding to the downregulation of PGC-1α. The PGC-1α/ATF5 axis mediated the UPRmt activation and stress-resistance role of THC in vitro. Collectively, the present study provides the first evidence that PGC-1 and ATF5 can form a signaling axis to partly activate UPRmt that mediates the cardioprotective role of THC in pathological cardiac hypertrophy.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Shi Peng ◽  
Xiao-feng Lu ◽  
Yi-ding Qi ◽  
Jing Li ◽  
Juan Xu ◽  
...  

Aims. We aimed to investigate whether LCZ696 protects against pathological cardiac hypertrophy by regulating the Sirt3/MnSOD pathway. Methods. In vivo, we established a transverse aortic constriction animal model to establish pressure overload-induced heart failure. Subsequently, the mice were given LCZ696 by oral gavage for 4 weeks. After that, the mice underwent transthoracic echocardiography before they were sacrificed. In vitro, we introduced phenylephrine to prime neonatal rat cardiomyocytes and small-interfering RNA to knock down Sirt3 expression. Results. Pathological hypertrophic stimuli caused cardiac hypertrophy and fibrosis and reduced the expression levels of Sirt3 and MnSOD. LCZ696 alleviated the accumulation of oxidative reactive oxygen species (ROS) and cardiomyocyte apoptosis. Furthermore, Sirt3 deficiency abolished the protective effect of LCZ696 on cardiomyocyte hypertrophy, indicating that LCZ696 induced the upregulation of MnSOD and phosphorylation of AMPK through a Sirt3-dependent pathway. Conclusions. LCZ696 may mitigate myocardium oxidative stress and apoptosis in pressure overload-induced heart failure by regulating the Sirt3/MnSOD pathway.


2020 ◽  
Vol 40 (11) ◽  
Author(s):  
Maomao Gao ◽  
Fengjiao Hu ◽  
Manli Hu ◽  
Yufeng Hu ◽  
Hongjie Shi ◽  
...  

Abstract Aim: The study aims to evaluate protective effects of sophoricoside (Sop) on cardiac hypertrophy. Meanwhile, the potential and significance of Sop should be broadened and it should be considered as an attractive drug for the treatment of pathological cardiac hypertrophy and heart failure. Methods: Using the phenylephrine (PE)-induced neonatal rat cardiomyocytes (NRCMs) enlargement model, the potent protection of Sop against cardiomyocytes enlargement was evaluated. The function of Sop was validated in mice received transverse aortic coarctation (TAC) or sham surgery. At 1 week after TAC surgery, mice were treated with Sop for the following 4 weeks, the hearts were harvested after echocardiography examination. Results: Our study revealed that Sop significantly mitigated TAC-induced heart dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis. Mechanistically, Sop treatment induced a remarkable activation of AMPK/mTORC1-autophagy cascade following sustained hypertrophic stimulation. Importantly, the protective effect of Sop was largely abolished by the AMPKα inhibitor Compound C, suggesting an AMPK activation-dependent manner of Sop function on suppressing pathological cardiac hypertrophy. Conclusion: Sop ameliorates cardiac hypertrophy by activating AMPK/mTORC1-mediated autophagy. Hence, Sop might be an attractive candidate for the treatment of pathological cardiac hypertrophy and heart failure.


2021 ◽  
Author(s):  
Zhiyu Dai ◽  
Jianding Cheng ◽  
Bin Liu ◽  
Dan Yi ◽  
Anlin Feng ◽  
...  

Cardiac hypertrophy and fibrosis are common adaptive responses to injury and stress, eventually leading to heart failure. Hypoxia signaling is important to the (patho)physiological process of cardiac remodeling. However, the role of endothelial Prolyl-4 hydroxylase 2 (PHD2)/hypoxia inducible factors (HIFs) signaling in the pathogenesis of heart failure remains elusive. We observed a marked decrease of PHD2 expression in heart tissues and cardiovascular endothelial cells from patients with cardiomyopathy. Mice with Tie2-Cre-mediated deletion of Egln1 (encoding PHD2) or tamoxifen-induced endothelial Egln1 deletion exhibited left ventricular hypertrophy and cardiac fibrosis. Genetic ablation and pharmacological inhibition of Hif2a but not Hif1a in endothelial Egln1 deficient mice normalized cardiac size and function. The present studies define for the first time an unexpected role of endothelial PHD2 deficiency in inducing cardiac hypertrophy and fibrosis in a HIF-2α dependent manner. Targeting PHD2/HIF-2α signaling may represent a novel therapeutic approach for the treatment of pathological cardiac hypertrophy and failure.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Manuel Ramos-Kuri ◽  
Sri Harika Meka ◽  
Fabio Salamanca-Buentello ◽  
Roger J. Hajjar ◽  
Larissa Lipskaia ◽  
...  

Abstract The Ras family of small Guanosine Triphosphate (GTP)-binding proteins (G proteins) represents one of the main components of intracellular signal transduction required for normal cardiac growth, but is also critically involved in the development of cardiac hypertrophy and heart failure. The present review provides an update on the role of the H-, K- and N-Ras genes and their related pathways in cardiac diseases. We focus on cardiac hypertrophy and heart failure, where Ras has been studied the most. We also review other cardiac diseases, like genetic disorders related to Ras. The scope of the review extends from fundamental concepts to therapeutic applications. Although the three Ras genes have a nearly identical primary structure, there are important functional differences between them: H-Ras mainly regulates cardiomyocyte size, whereas K-Ras regulates cardiomyocyte proliferation. N-Ras is the least studied in cardiac cells and is less associated to cardiac defects. Clinically, oncogenic H-Ras causes Costello syndrome and facio-cutaneous-skeletal syndromes with hypertrophic cardiomyopathy and arrhythmias. On the other hand, oncogenic K-Ras and alterations of other genes of the Ras-Mitogen-Activated Protein Kinase (MAPK) pathway, like Raf, cause Noonan syndrome and cardio-facio-cutaneous syndromes characterized by cardiac hypertrophy and septal defects. We further review the modulation by Ras of key signaling pathways in the cardiomyocyte, including: (i) the classical Ras-Raf-MAPK pathway, which leads to a more physiological form of cardiac hypertrophy; as well as other pathways associated with pathological cardiac hypertrophy, like (ii) The SAPK (stress activated protein kinase) pathways p38 and JNK; and (iii) The alternative pathway Raf-Calcineurin-Nuclear Factor of Activated T cells (NFAT). Genetic alterations of Ras isoforms or of genes in the Ras-MAPK pathway result in Ras-opathies, conditions frequently associated with cardiac hypertrophy or septal defects among other cardiac diseases. Several studies underline the potential role of H- and K-Ras as a hinge between physiological and pathological cardiac hypertrophy, and as potential therapeutic targets in cardiac hypertrophy and failure. Graphic abstract


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Depei Liu ◽  
Yu-Xuan Luo ◽  
Xiaoqiang Tang ◽  
Xi-Zhou An ◽  
Xue-Min Xie ◽  
...  

Aims: Oxidative stress contributes to the development of cardiac hypertrophy and heart failure. One of the mitochondrial sirtuins, Sirt4, is highly expressed in the heart, but its function remains unknown. The aim of the present study was to investigate the role of Sirt4 in the pathogenesis of pathological cardiac hypertrophy and the molecular mechanism by which Sirt4 regulates mitochondrial oxidative stress. Methods and results: Male C57BL/6 Sirt4 knockout mice, transgenic mice exhibiting cardiac-specific overexpression of Sirt4 (Sirt4-Tg) and their respective controls were treated with angiotensin II (Ang II). At 4 weeks, hypertrophic growth of cardiomyocytes, fibrosis and cardiac function were analyzed. Sirt4 deficiency conferred resistance to Ang II infusion by significantly suppressing hypertrophic growth, and the deposition of fibrosis. In Sirt4-Tg mice, aggravated hypertrophy and reduced cardiac function were observed compared with non-transgenic mice following Ang II treatment. Mechanistically, Sirt4 inhibited the binding of manganese superoxide dismutase (MnSOD) to Sirt3, another member of the mitochondrial sirtuins, and increased MnSOD acetylation levels to reduce its activity, resulting in elevated reactive oxygen species (ROS) accumulation upon Ang II stimulation. Furthermore, inhibition of ROS with MnTBAP, a mimetic of SOD, blocked the Sirt4-mediated aggravation of the hypertrophic response in Ang II-treated Sirt4-Tg mice. Conclusions: Sirt4 promotes hypertrophic growth and cardiac dysfunction by increasing ROS levels upon pathological stimulation. These findings reveal a role of Sirt4 in pathological cardiac hypertrophy, providing a new potential therapeutic strategy for this disease.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Kisuk Min ◽  
Yan Huang ◽  
Frank J Giordano ◽  
Sudip Bajpeyi ◽  
Anton M Bennett

Introduction: Cardiac remodeling occurs in response to pathological stimuli including chronic pressure overload, subsequently leading to heart failure. Despite considerable research efforts, the molecular mechanisms responsible for heart failure have yet to be fully elucidated. One of the prominent signaling pathways involved in the development of pathological cardiac hypertrophy is the mitogen-activated protein kinases (MAPKs) pathways. The MAPKs are inactivated by the MAPK phosphatases (MKPs) through direct dephosphorylation. Growing evidence suggests the importance of MKP-5 signaling mechanisms in physiological and pathological processes. However, the role of MKP-5 has not been explored in cardiac muscle. The objective of this study is to investigate how MKP-5-mediated MAPK activity contributes to mechanisms responsible for pressure overload-induced cardiac hypertrophy. Hypothesis: We tested the hypothesis that MKP-5 serves as a central regulator of MAPKs in pressure overload-induced cardiac hypertrophy. Methods: To investigate the role of MKP-5 in cardiac muscle, we caused pressure overload-induced cardiac hypertrophy in wild type (mkp-5 +/+ ) mice and MKP-5 deficient mice (mkp-5 -/- ) through transverse aortic constriction (TAC). Cardiac function was evaluated by echocardiographic analysis at 4 weeks after TAC. Cardiac hypertrophy was measured by heart-to-body weight ratio. Interstitial myocardial fibrosis was evaluated by Sirius red stains and expression of fibrogenic genes was determined by quantitative PCR. Results: Echocardiographic analysis showed that the ejection fraction and fractional shortening of mkp-5 +/+ mice significantly decreased by at 4 weeks after TAC. Heart-to-body weight ratio increased in mkp-5 +/+ mice. However, MKP-5-deficient heart was protected from cardiac dysfunction and cardiac hypertrophy induced by TAC. Importantly, the fibrogenic genes were markedly reduced in mkp-5 -/- mice as compared with mkp-5 +/+ mice at 4 weeks after TAC. Conclusions: Collectively, our study demonstrates that MKP-5 deficiency prevents the heart from pressure overload-induced cardiac hypertrophy and suggests that MKP-5 may serve as a novel therapeutic target for treatment of heart disease.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Qing-jun Zhang ◽  
Ganesha Rai ◽  
Ajit Jadhav ◽  
Anton Simeonov ◽  
David Maloney ◽  
...  

One of the major challenges in managing and treating heart failure patients is to develop disease-modifying drugs that can prevent, reverse, or slow down the disease progression. Upon pathological insults, the heart undergoes remodeling processes, including left ventricular hypertrophy and reprogramming of gene expression. Understanding the mechanisms involved could provide a key to develop interventional therapeutics. Epigenetic modification of chromatin, including histone methylation, regulates gene transcription in response to environmental signals. JMJD2A is a trimethyl-lysine specific histone lysine demethylase. To study the role of JMJD2A, we generated heart specific JMJD2A overexpression and deletion mouse lines. Our studies with these genetically modified mice indicated that JMJD2A is required for pathological cardiac hypertrophy. Furthermore, we show that the demethylase activity of JMJD2A is required for its transcriptional activity. These data suggests that targeting JMJD2A enzymatic activity may be used to suppress hypertrophic remodeling. To test this hypothesis, we tested a collection of small molecule inhibitors of JMJD2 in collaboration with Chemists in NIH and identified several small molecule inhibitors of JMJD2A that are active in cell-based assays. These small molecule inhibitors of JMJD2A inhibited the phenylephrine-stimulated cardiomyocyte hypertrophy in vitro. Our data suggests that JMJD2A enzymatic activity may act as a hypertrophic determinant and may be an innovative drug target for prevention and treatment of pathological cardiac hypertrophy and heart failure.


2021 ◽  
Author(s):  
Victoriane Peugnet ◽  
Maggy Chwastyniak ◽  
Steve Lancel ◽  
Laurent Bultot ◽  
Natacha Fourny ◽  
...  

AbstractHeart failure, mostly associated with cardiac hypertrophy, is still a major cause of illness and death. Oxidative stress causes contractile failure and the accumulation of reactive oxygen species leads to mitochondrial dysfunction, associated with aging and heart failure, suggesting that mitochondria-targeted therapies could be effective in this context. The purpose of this work was to characterize how mitochondrial oxidative stress is involved in cardiac hypertrophy development and to determine if mitochondria-targeted therapies could improve cardiac phenotypes. We used neonatal and adult rat cardiomyocytes (NCMs and ACMs) hypertrophied by isoproterenol (Iso) to induce an increase of mitochondrial superoxide anion. Superoxide dismutase 2 activity and mitochondrial biogenesis were significantly decreased after 24h of Iso treatment. To counteract the mitochondrial oxidative stress induced by hypertrophy, we evaluated the impact of two different anti-oxidants, mitoquinone (MitoQ) and EUK 134. Both significantly decreased mitochondrial superoxide anion and hypertrophy in hypertrophied NCMs and ACMs. Conversely to EUK 134 which preserved cell functions, MitoQ impaired mitochondrial function by decreasing maximal mitochondrial respiration, mitochondrial membrane potential and mitophagy (particularly Parkin expression) and altering mitochondrial structure. The same decrease of Parkin was found in human cardiomyocytes but not in fibroblasts suggesting a cell specificity deleterious effect of MitoQ. Our data showed the importance of mitochondrial oxidative stress in the development of cardiomyocyte hypertrophy. Interestingly, we observed that targeting mitochondria by an anti-oxidant (MitoQ) impaired metabolism specifically in cardiomyocytes. Conversely, the SOD mimic (EUK 134) decreased both oxidative stress and cardiomyocyte hypertrophy and restored impaired cardiomyocyte metabolism and mitochondrial biogenesis.


2020 ◽  
Vol 7 ◽  
Author(s):  
Yan Wang ◽  
Zengshuo Xie ◽  
Nan Jiang ◽  
Zexuan Wu ◽  
Ruicong Xue ◽  
...  

Cardiac hypertrophy is a pathophysiological response to harmful stimuli. The continued presence of cardiac hypertrophy will ultimately develop into heart failure. The mitochondrion is the primary organelle of energy production, and its dysfunction plays a crucial role in the progressive development of heart failure from cardiac hypertrophy. Hispidulin, a natural flavonoid, has been substantiated to improve energy metabolism and inhibit oxidative stress. However, how hispidulin regulates cardiac hypertrophy and its underlying mechanism remains unknown. We found that hispidulin significantly inhibited pressure overload-induced cardiac hypertrophy and improved cardiac function in vivo and blocked phenylephrine (PE)-induced cardiomyocyte hypertrophy in vitro. We further proved that hispidulin remarkably improved mitochondrial function, manifested by increased electron transport chain (ETC) subunits expression, elevated ATP production, increased oxygen consumption rates (OCR), normalized mitochondrial morphology, and reduced oxidative stress. Furthermore, we discovered that Sirt1, a well-recognized regulator of mitochondrial function, might be a target of hispidulin, as evidenced by its upregulation after hispidulin treatment. Cotreatment with EX527 (a Sirt1-specific inhibitor) and hispidulin nearly completely abolished the antihypertrophic and protective effects of hispidulin on mitochondrial function, providing further evidence that Sirt1 could be the pivotal downstream effector of hispidulin in regulating cardiac hypertrophy.


Sign in / Sign up

Export Citation Format

Share Document