Abstract P182: Advanced Atherosclerosis is Associated with Systemic and End-organ Inflammation, Vascular Oxidative Stress and Endothelial Dysfunction but not Hypertension in Mice

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Quynh N Dinh ◽  
Grant R Drummond ◽  
Henry Diep ◽  
Christopher T Chan ◽  
Dorota Ferens ◽  
...  

Introduction: Evidence suggests that hypertension involves underlying inflammation, however whether atherosclerosis - a chronic inflammatory condition - can cause hypertension is unknown. We tested whether blood pressure (BP) is higher in high-fat fed ApoE-/- vs chow-fed wild-type (WT) mice, and whether advanced atherosclerosis is associated with systemic and end-organ inflammation, oxidative stress and endothelial dysfunction. Methods: Male ApoE-/- and WT mice were placed on high fat and chow diets, respectively, from 5-56 weeks. To clarify the effects of ageing alone, aged WT mice were compared to young chow-fed WT mice (8-12 week old). We measured systolic BP, plasma cytokine levels, mRNA expression of inflammatory markers, vascular superoxide and endothelial function. Results: There was no difference in BP of aged ApoE-/- (104.2 ± 2.9 mmHg) and age-matched WT mice (113.2 ± 1.3 mmHg) (n=13-18, P>0.05). However, plasma IL-6, TNF-α and IFN-γ were elevated in ApoE-/- by more than 2-fold vs age-matched WT (n=9-10, all P<0.05), as was brain expression of IL-1β, IL-6, TNF-α, IFN-γ, TGFβ1, CCR2, CCL2, CCL7, CCL8, CCL12 and IL-10 (n=9-10, all P<0.05), and aortic expression of IL-6, CCR2, CCL8 and CCL12 (n=6-8, all P<0.05). Ageing, but not atherosclerosis, increased renal expression of IL-1β, IL-6, TNF-α, CCR2, CCL2, CCL7, CCL8, CCL12 and Foxp3, and aortic expression of CCL2, IL-10 and Foxp3 by at least 2-fold (n=6-10, all P<0.05). In ApoE-/- aorta, Nox2-dependent superoxide production was 4-fold greater than in WT (n=5-6, P<0.05), and endothelium-dependent vasorelaxation to carbachol was markedly reduced by more than half (n=5-7, P<0.05). Ageing alone had no effect on BP, systemic inflammation or endothelial function. Conclusions: Despite the systemic and end-organ inflammation, oxidative stress and endothelial dysfunction, advanced atherosclerosis does not result in elevated BP.

2011 ◽  
Vol 301 (2) ◽  
pp. H306-H314 ◽  
Author(s):  
Sewon Lee ◽  
Yoonjung Park ◽  
Kevin C. Dellsperger ◽  
Cuihua Zhang

Type 2 diabetes (T2D) is a leading risk factor for a variety of cardiovascular diseases including coronary heart disease and atherosclerosis. Exercise training (ET) has a beneficial effect on these disorders, but the basis for this effect is not fully understood. This study was designed to investigate whether the ET abates endothelial dysfunction in the aorta in T2D. Heterozygous controls (m Lepr db) and type 2 diabetic mice ( db/db; Lepr db) were either exercise entrained by forced treadmill exercise or remained sedentary for 10 wk. Ex vivo functional assessment of aortic rings showed that ET restored acetylcholine-induced endothelial-dependent vasodilation of diabetic mice. Although the protein expression of endothelial nitric oxide synthase did not increase, ET reduced both IFN-γ and superoxide production by inhibiting gp91phox protein levels. In addition, ET increased the expression of adiponectin (APN) and the antioxidant enzyme, SOD-1. To investigate whether these beneficial effects of ET are APN dependent, we used adiponectin knockout (APNKO) mice. Indeed, impaired endothelial-dependent vasodilation occurred in APNKO mice, suggesting that APN plays a central role in prevention of endothelial dysfunction. APNKO mice also showed increased protein expression of IFN-γ, gp91phox, and nitrotyrosine but protein expression of SOD-1 and -3 were comparable between wild-type and APNKO. These findings in the aorta imply that APN suppresses inflammation and oxidative stress in the aorta, but not SOD-1 and -3. Thus ET improves endothelial function in the aorta in T2D via both APN-dependent and independent pathways. This improvement is due to the effects of ET in inhibiting inflammation and oxidative stress (APN-dependent) as well as in improving antioxidant enzyme (APN-independent) performance in T2D.


2012 ◽  
Vol 25 (2) ◽  
pp. 288-301 ◽  
Author(s):  
Sébastien Lacroix ◽  
Christine Des Rosiers ◽  
Jean-Claude Tardif ◽  
Anil Nigam

Endothelial dysfunction is a turning point in the initiation and development of atherosclerosis and its complications and is predictive of future cardiovascular events. Ingestion of high-carbohydrate or high-fat meals often results in postprandial hyperglycaemia and/or hypertriacylglycerolaemia that may lead to a transient impairment in endothelial function. The present review will discuss human studies evaluating the impact of high-carbohydrate and high-fat challenges on postprandial endothelial function as well as the potential role of oxidative stress in such postprandial metabolic alterations. Moreover, the present review will differentiate the postprandial endothelial and oxidative impact of meals rich in varying fatty acid types.


2020 ◽  
Vol 18 (5) ◽  
pp. 354-361
Author(s):  
Gülay Okay ◽  
Meliha Meric Koc ◽  
Eray Metin Guler ◽  
Ayşegül Yabaci ◽  
Abdürrahim Kocyigit ◽  
...  

Background: Serum cytokine levels over the course of HIV infection usually increase with immunosuppression and decrease after antiretroviral treatment (ART). Objectives: The aim of the study is to compare cytokine levels between HIV-infected patients (HIP) and controls and investigate the relationship between CD4+T cell count, HIV-RNA levels, and cytokine levels. Methods: The study subjects comprised ART-naive HIP (n=30) with no comorbidities and age-and sex-matched healthy controls. We measured levels of IL-6, IL-1β, TNF-α, and IFN-γ in serum samples of HIP at the beginning and at month 6 of ART and in controls. Results: The mean age of the study subjects was 38.7 ±10.3 years, with men making up 86.7% of the study subjects (n=26). IL-6, IL-1β, and TNF-α levels were significantly higher in both ART-naive (p<0.001, p=0.002, p=0.001) and ART-experienced HIP (p<0.001) than controls. The IFN-γ level was lower in both ART-naive and ART-experienced HIP compared to controls (p=0.082 and p=0.002). There was a positive correlation between the CD4+T cell count and serum concentration of IFN- γ(r=0.320, p<0.05). While the serum IFN-γ concentration showed a negative correlation with the HIVRNA level(r=-0.412, p<0.001), the serum IL-1β, IL-6, and TNF-α concentrations showed a positive correlation with the HIV-RNA level (r=0.349, p<0.001; r:0.54, p<0.001; r:0.438, p<0.00). Conclusions: Although serum concentrations of IL-6, IL-1β and TNF-α showed a significant decrease after ART, they were still significantly higher than the controls. IFN-γ responded differently to ART compared to the other cytokines, indicating that it may play a distinct and important role in the pathogenesis of HIV infection.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 856
Author(s):  
Eui-Jeong Han ◽  
Ilekuttige Priyan Shanura Fernando ◽  
Hyun-Soo Kim ◽  
Dae-Sung Lee ◽  
Areum Kim ◽  
...  

The present study evaluated the effects of (–)-loliolide isolated from Sargassum horneri (S. horneri) against oxidative stress and inflammation, and its biological mechanism in interferon (IFN)-γ/tumor necrosis factor (TNF)-α-stimulated HaCaT keratinocytes. The results showed that (–)-loliolide improved the cell viability by reducing the production of intracellular reactive oxygen species (ROS) in IFN-γ/TNF-α-stimulated HaCaT keratinocytes. In addition, (–)-loliolide effectively decreased the expression of inflammatory cytokines (interleukin (IL)-4 IL-6, IL-13, IFN-γ and TNF-α) and chemokines (CCL11 (Eotaxin), macrophage-derived chemokine (MDC), regulated on activation, normal T cell expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC)), by downregulating the expression of epidermal-derived initial cytokines (IL-25, IL-33 and thymic stromal lymphopoietin (TSLP)). Furthermore, (–)-loliolide suppressed the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling, whereas it activated nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Interestingly, the cytoprotective effects of (–)-loliolide against IFN-γ/TNF-α stimulation were significantly blocked upon inhibition of HO-1. Taken together, these results suggest that (–)-loliolide effectively suppressed the oxidative stress and inflammation by activating the Nrf2/HO-1 signaling in IFN-γ/TNF-α-stimulated HaCaT keratinocytes.


2017 ◽  
Vol 114 (2) ◽  
pp. 312-323 ◽  
Author(s):  
Sebastian Steven ◽  
Mobin Dib ◽  
Michael Hausding ◽  
Fatemeh Kashani ◽  
Matthias Oelze ◽  
...  

Abstract Aims CD40 ligand (CD40L) signaling controls vascular oxidative stress and related dysfunction in angiotensin-II-induced arterial hypertension by regulating vascular immune cell recruitment and platelet activation. Here we investigated the role of CD40L in experimental hyperlipidemia. Methods and results Male wild type and CD40L−/− mice (C57BL/6 background) were subjected to high fat diet for sixteen weeks. Weight, cholesterol, HDL, and LDL levels, endothelial function (isometric tension recording), oxidative stress (NADPH oxidase expression, dihydroethidium fluorescence) and inflammatory parameters (inducible nitric oxide synthase, interleukin-6 expression) were assessed. CD40L expression, weight, leptin and lipids were increased, and endothelial dysfunction, oxidative stress and inflammation were more pronounced in wild type mice on a high fat diet, all of which was almost normalized by CD40L deficiency. Similar results were obtained in diabetic db/db mice with CD40/TRAF6 inhibitor (6877002) therapy. In a small human study higher serum sCD40L levels and an inflammatory phenotype were detected in the blood and Aorta ascendens of obese patients (body mass index > 35) that underwent by-pass surgery. Conclusion CD40L controls obesity-associated vascular inflammation, oxidative stress and endothelial dysfunction in mice and potentially humans. Thus, CD40L represents a therapeutic target in lipid metabolic disorders which is a leading cause in cardiovascular disease.


2002 ◽  
Vol 39 ◽  
pp. 253-254
Author(s):  
Wei-Chuan Tsai ◽  
Yi-Heng Li ◽  
Chih-Chan Lin ◽  
Ting-Hsing Chao ◽  
Jyh-Hong Chen

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Sebastian Steven ◽  
Matthias Oelze ◽  
Moritz Brandt ◽  
Elisabeth Ullmann ◽  
Swenja Kröller-Schön ◽  
...  

Objective. Oxidative stress and endothelial dysfunction contribute to pulmonary arterial hypertension (PAH). The role of the nitrovasodilator pentaerythritol tetranitrate (PETN) on endothelial function and oxidative stress in PAH has not yet been defined.Methods and Results. PAH was induced by monocrotaline (MCT, i.v.) in Wistar rats. Low (30 mg/kg; MCT30), middle (40 mg/kg; MCT40), or high (60 mg/kg; MCT60) dose of MCT for 14, 28, and 42 d was used. MCT induced endothelial dysfunction, pulmonary vascular wall thickening, and fibrosis, as well as protein tyrosine nitration. Pulmonary arterial pressure and heart/body and lung/body weight ratio were increased in MCT40 rats (28 d) and reduced by oral PETN (10 mg/kg, 24 d) therapy. Oxidative stress in the vascular wall, in the heart, and in whole blood as well as vascular endothelin-1 signaling was increased in MCT40-treated rats and normalized by PETN therapy, likely by upregulation of heme oxygenase-1 (HO-1). PETN therapy improved endothelium-dependent relaxation in pulmonary arteries and inhibited endothelin-1-induced oxidative burst in whole blood and the expression of adhesion molecule (ICAM-1) in endothelial cells.Conclusion. MCT-induced PAH impairs endothelial function (aorta and pulmonary arteries) and increases oxidative stress whereas PETN markedly attenuates these adverse effects. Thus, PETN therapy improves pulmonary hypertension beyond its known cardiac preload reducing ability.


Sign in / Sign up

Export Citation Format

Share Document