Abstract MP26: Endothelial-derived Microvesicles From Andean Highlanders With Excessive Erythrocytosis Induce A Deleterious Cardiomyocyte Phenotype

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
L. Madden Brewster ◽  
Hannah Fandl ◽  
Anthony Bain ◽  
Vinicius P Garcia ◽  
Rachel Stone ◽  
...  

Background: Excessive erythrocytosis (EE), defined as Hb ≥21 g/dL in men and ≥19 g/dL in women, is a pathologic consequence of residing at high altitude (>2500 m) and is common in Andean highlanders. EE is associated with increased cardiovascular risk and cardiac dysfunction. Specifically, EE has been linked to congestive heart failure as well as right ventricular hypertrophy in high altitude dwellers. The mechanisms responsible for diminished cardiac function in adults with EE remain unclear. Endothelial microvesicles (EMVs) play an important role in mediating interaction between the vascular endothelium and cardiac function. The experimental aim of this study was to determine the effects of EMVs isolated from adults with EE on markers of cardiomyocyte fibrosis, hypertrophy and autophagy as well as endothelial nitric oxide synthase (eNOS). Methods: Twenty-four male residents of Cerro de Pasco, Peru (4,340 m) were studied: 12 highlanders without EE (Healthy; age: 40±4 yr; BMI: 26.4±1.7; Hb: 17.4±0.5 g/dL) and 12 highlanders with EE (EE: 45±5 yr; 26.7±1.0; 24.4±0.4 g/dL). All subjects were non-obese, normotensive, normolipidemic and non-diabetic. EMVs (CD31+/CD42b-) were identified, enumerated, and isolated from plasma by flow cytometry. Human induced pluripotent stem cell cardiomyocytes were cultured and treated with EMVs from either healthy or EE men. Results: EMVs from EE men induced significantly greater expression of specific markers of fibrosis: TGF-β (91.1±4.0 vs 52.7±3.8 AU) and alpha-1 type I collagen (85.6±5.6 vs 59.7±4.8 AU) and hypertrophy: troponin T (41.4±2.0 vs 16.9±1.4 AU) and α-actinin (95.3±6.7 vs 62.4±5.0 AU) than EMVs from healthy men. Cell autophagy was not significantly affected by EE EMVs. Intercellular expression of phosphorylated eNOS at the primary activation site, Ser1177 (13.3±1.1 vs 18.9±1.2 AU), and inhibitory site, Thr495 (56.7±3.4 vs 40.8±2.7 AU), were ~35% lower and ~30% higher (both P<0.05), respectively, in cells treated with EMVs from EE compared with healthy men. Conclusions: These data indicate that EMVs from Andean highlanders with EE negatively affect cardiomyocyte function and, therefore, may contribute to the increased risk of heart failure and cardiac dysfunction associated with EE.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Foulkes ◽  
B Costello ◽  
E.J Howden ◽  
K Janssens ◽  
H Dillon ◽  
...  

Abstract Background Young cancer survivors are at increased risk of impaired cardiopulmonary fitness (VO2peak) and heart failure. Assessment of exercise cardiac reserve may reveal sub-clinical abnormalities that better explain impairments in fitness and long term heart failure risk. Purpose To investigate the presence of impaired VO2peak in pediatric cancer survivors with increased risk of heart failure, and to assess its relationship with resting cardiac function and cardiac reserve Methods Twenty pediatric cancer survivors (aged 8–24 years) treated with anthracycline chemotherapy underwent cardiopulmonary exercise testing to quantify VO2peak, with a value &lt;85% of predicted defined as impaired VO2peak. Resting cardiac function was assessed using 3-dimensional echocardiography, with cardiac reserve quantified from resting and peak exercise heart rate (HR), stroke volume index (SVi) and cardiac index (CI) using exercise cardiac magnetic resonance imaging. Results 12 of 20 survivors (60%) had impaired VO2peak (97±14% vs. 70±16% of age and gender predicted). There were no differences in echocardiographic or CMR measurements of resting cardiac function between survivors with normal or impaired VO2peak. However, those with reduced VO2peak had diminished cardiac reserve, with a lesser increase in CI (Fig. 1A) and SVi (Fig. 1B) during exercise (Interaction P=0.001 for both), whilst the HR response was similar (Fig. 1C; P=0.71). Conclusions Resting measures of cardiac function are insensitive to significant cardiac dysfunction amongst pediatric cancer survivors with reduced VO2peak. Measures of cardiopulmonary fitness and cardiac reserve may aid in early identification of survivors with heightened risk of long-term heart failure. Figure 1 Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): National Heart Foundation


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Hideaki Inazumi ◽  
Yasuaki Nakagawa ◽  
Kenji Moriuchi ◽  
Koichiro Kuwahara

Background: In the development of heart failure, pathological intracellular signaling reactivates fetal cardiac gene program, which leads to pathological cardiac remodeling. We previously reported that a transcriptional repressor, neuron restrictive silencer factor (NRSF) represses fetal cardiac gene program and maintains normal cardiac function, while pathological stimuli de-repress this NRSF mediated repression via activation of CaMKII. Molecular mechanisms by which NRSF maintains cardiac function remains to be determined, however. Purpose: To elucidate molecular mechanisms by which NRSF maintains normal cardiac function. Methods and Results: Newly generated cardiac-specific NRSF knockout mice (NRSF-cKO) showed cardiac dysfunction and premature deaths accompanied with lethal arrhythmias, as was observed in our previously reported cardiac-specific dominant-negative mutant of NRSF transgenic mice (dnNRSF-Tg). Expression of Gnao1 gene encoding Gα o , a member of inhibitory G proteins, was commonly increased in ventricles of dnNRSF-Tg and NRSF-cKO. ChIP-seq analysis, reporter assay and electrophoretic mobility shift assay identified that NRSF transcriptionally regulates Gnao1 gene expression. Genetic Knockdown of Gα o in dnNRSF-Tg and NRSF-cKO ameliorated the reduced systolic function, increased arrhythmogenicity and reduced survival rates. Conversely cardiac-specific GNAO1 overexpression was sufficient to show impaired cardiac function. Mechanistically, Gα o increases current density in surface sarcolemmal L-type Ca 2 + channel and then activates CaMKII without affecting protein kinase A activity, which finally leads to impaired Ca 2+ handling and systolic dysfunction. Furthermore, expression of Gα o is also increased in ventricles of transverse aortic constriction model mice and cardiac troponin T mutant DCM model mice, in both of which, genetic reduction of Gα o prevented the progression of cardiac dysfunction. Conclusions: Increased expression of Gα o , induced by attenuation of NRSF-mediated repression forms a pathological circuit via activation of CaMKII and progresses heart failure by impairing Ca 2+ homeostasis. Gα o is a potential therapeutic target for heart failure.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
H Inazumi ◽  
K Kuwahara ◽  
Y Kuwabara ◽  
Y Nakagawa ◽  
H Kinoshita ◽  
...  

Abstract Background We previously demonstrated that a transcriptional repressor, neuron restrictive silencer factor (NRSF), maintains normal cardiac function and electrical stability. Transgenic mice expressing a dominant-negative mutant of NRSF in their hearts (dnNRSF-Tg) exhibit systolic dysfunction with cardiac dilation and premature death due to lethal arrhythmias like human dilated cardiomyopathy (DCM). Underlining mechanisms remain to be elucidated, however. Purpose We studied underling mechanisms by which NRSF maintains normal cardiac function to identify novel therapeutic targets for heart failure. Methods and results We generated cardiac-specific NRSF knockout mice (NRSFcKO) and confirmed that cardiac phenotypes of NRSFcKO are similar to those of dnNRSF-Tg. cDNA microarray analysis revealed that cardiac gene expression of GNAO1 that encodes Gαo, a member of inhibitory G protein Gαi family, is increased in both dnNRSF-Tg and NRSFcKO ventricles. We confirmed that GNAO1 is a direct target of NRSF through ChIP-seq analysis, reporter assay and electrophoretic mobility shift assay. In dnNRSF-Tg, pharmacological inhibition of Gαo with pertussis toxin improved systolic dysfunction and knockdown of Gαo by crossing with GNAO1 knockout mice improved not only systolic function but also frequency of ventricular arrhythmias and survival rates. Electrophysiological and biochemical analysis in ventricular myocytes obtained from dnNRSF-Tg demonstrated that genetic reduction of Gαo ameliorated abnormalities in Ca2+ handling, which include increased current density in surface sarcolemmal L-type Ca2+ channel, reduced content of sarcoplasmic reticulum Ca2+ and lowered peak of Ca2+ transient. Furthermore, genetic reduction of Gαo attenuated increased phosphorylation levels of CAMKII in dnNRSF-Tg ventricles, which presumably underlies the improvement in Ca2+ handling. In addition, we identified increased Gαo expression in ventricles of heart failure model mice induced by transverse aortic constriction and cardiac troponin T mutant DCM model mice, in both of which, genetic reduction of Gαo ameliorated cardiac dysfunction. Figure 1 Conclusions We found that increased expression of Gαo, induced by attenuation of NRSF-mediated repression, plays a crucial role in the progression of cardiac dysfunction and lethal arrhythmias by evoking Ca2+ handling abnormality. These data demonstrate that Gαo is a potential therapeutic target for heart failure.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Satoshi Okumura ◽  
Yunzhe Bai ◽  
Meihua Jin ◽  
Sayaka Suzuki ◽  
Akiko Kuwae ◽  
...  

The sympathetic nervous system and proinflammatory cytokines are believed to play independent roles in the pathophysiology of heart failure. However, the recent identification of Epac (exchange protein activated by cyclic AMP), a new cyclic AMP-binding protein that directly activates Rap1, have implicated that there may be a potential cross talk between the sympathetic and cytokine signals. In order to examine the role of Epac in cytokine signal to regulate cardiac function, we have generated transgenic mice expressing the human Epac1 gene under the control of alpha-cardiac myosin heavy chain promoter (Epac1-TG), and examined their response in lipopolysaccharide (LPS)-induced cardiac dysfunction, a well established model for sepsis-induced cardiac dysfunction. Sepsis-induced cardiac dysfunction results from the production of proinflammatory cytokines. At baseline, left ventricular ejection fraction (LVEF) was similar (TG vs. NTG, 67±1.7 vs. 69±2.1%, n =7–9). The degree of cardiac hypertrophy (LV(mg)/tibia(mm)) was also similar at 3 months old (TG vs. NTG 4.0±0.1 vs. 4.2±0.1, n =5–6), but it became slightly but significantly greater in Epac1-TG at 5 month old (TG vs. NTG 4.9±0.1 vs. 4.4±0.1, p< 0.05, n =5–7). LPS (5mg/kg) elicited a significant and robust reduction of LVEF in both Epac1-TG and NTG, but the magnitude of this decrease was much less in Epac1-TG at 6 hr after injection (TG vs. NTG 48±2.4 vs. 57±1.8%, p< 0.01, n =6–9). At 24 hr after injection, cardiac function was restored to the baseline in both Epac1-TG and NTG. We also examined the activation of JAK-STAT pathway at 24 hr after injection. The tyrosine phosphorylation of STAT1 (Tyr701) and STAT3 (Tyr705) in LV, which is an indicator of STAT activation, was reduced to a greater degree in Epac1-TG by 31±8.8% ( p< 0.05, n =4) and 29±5.9% ( p< 0.05, n =7), respectively, relative to that in NTG. Taken together, Epac1 protects the heart from the cytokine-induced cardiac dysfunction, at least in part, through the inhibition of the JAK-STAT pathway, suggesting the beneficial role played by sympathetic signal to antagonize proinflammatory cytokine signal in heart failure.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Kevin Morine ◽  
Vikram Paruchuri ◽  
Xiaoying Qiao ◽  
Emily Mackey ◽  
Mark Aronovitz ◽  
...  

Introduction: Activin receptor like kinase 1 (ALK1) mediates signaling via transforming growth factor beta-1 (TGFb1), a pro-fibrogenic cytokine. No studies have defined a role for ALK1 in heart failure. We tested the hypothesis that reduced ALK1 expression promotes maladaptive cardiac remodeling in heart failure. Methods and Results: ALK1 mRNA expression was quantified by RT-PCR in left ventricular (LV) tissue from patients with end-stage heart failure and compared to control LV tissue obtained from the National Disease Research Interchange (n=8/group). Compared to controls, LV ALK1 mRNA levels were reduced by 85% in patients with heart failure. Next, using an siRNA approach, we tested whether reduced ALK1 levels promote TGFb1-mediated collagen production in human cardiac fibroblasts. Treatment with an ALK1 siRNA reduced ALK1 mRNA levels by 75%. Compared to control, TGFb1-mediated Type I collagen and pSmad-3 protein levels were 2.5-fold and 1.7-fold higher, respectively, after ALK1 depletion. To explore a role for ALK1 in heart failure, ALK1 haploinsufficient (ALK1) and wild-type mice (WT; n=8/group) were studied 2 weeks after thoracic aortic constriction (TAC). Compared to WT, baseline LV ALK1 mRNA levels were 50% lower in ALK1 mice. Both LV and lung weights were higher in ALK1 mice after TAC. Cardiomyocyte area and LV mRNA levels of BNP, RCAN, and b-MHC were increased similarly, while SERCa levels were reduced in both ALK1 and WT mice after TAC. Compared to WT, LV fibrosis (Figure) and Type 1 Collagen mRNA and protein levels were higher among ALK1 mice. Compared to WT, LV fractional shortening (48±12 vs 26±10%, p=0.01) and survival (Figure) were lower in ALK1 mice after TAC. Conclusions: Reduced LV expression of ALK1 is associated with advanced heart failure in humans and promotes early mortality, impaired LV function, and cardiac fibrosis in a murine model of heart failure. Further studies examining the role of ALK1 and ALK1 inhibitors on cardiac remodeling are required.


Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2382-2388 ◽  
Author(s):  
Marcie Kritzik ◽  
Brian Savage ◽  
Diane J. Nugent ◽  
Sentot Santoso ◽  
Zaverio M. Ruggeri ◽  
...  

Three allelic differences in the α2 gene are associated with expression levels of the α2β1 integrin on the platelet surface. We have previously defined two linked silent polymorphisms in the α2 gene coding region at nucleotides 807 (C or T) and 873 (G or A). We have now identified one rarer nucleotide polymorphism in the coding region at nucleotide 837 (T or C) and four additional linked polymorphisms within the introns that flank these coding sequences. Moreover, we have determined that the alloantigenic Br polymorphism, which resides in a distal coding region at nucleotide 1648, is also linked to the 837 polymorphism. Thus, three α2 gene alleles, defined by eight nucleotide polymorphisms, have now been discovered. Allele 1 (807T/837T/873A/Brb) is associated with increased levels of α2β1; allele 2 (807C/837T/873G/Brb) and allele 3 (807C/837C/873G/Bra) are each associated with lower levels of α2β1. Finally, we also show here that the rate of platelet attachment to type I collagen in whole blood under conditions of high shear rate (1,500/s) is proportional to the density of α2β1 receptors on the platelet surface. Thus, the density of platelet α2β1 could have an important impact on platelet adhesion to collagen in whole blood and therefore on platelet function in vivo, contributing to an increased risk of thrombosis or to bleeding in relevant disease states.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Gladka ◽  
A De Leeuw ◽  
A Kohela ◽  
B Molenaar ◽  
D Versteeg ◽  
...  

Abstract   Intracellular calcium (Ca2+) overload is known to play a critical role in the development of cardiac dysfunction. Despite the remarkable progress in managing the progression of the disease, the development of effective therapies for heart failure (HF) remains challenging. Therefore, it is of great importance to understand the molecular mechanisms that maintain calcium level and contractility in homeostatic conditions. Here we identified a transcription factor ZEB2 that regulates the expression of numerous contractile and calcium-related genes. Zinc finger E-box-binding homeobox2 (ZEB2) is a transcription factor that plays a role during early fetal development and epithelial-to-mesenchymal transition (EMT); however, its function in the heart remains to be determined. Recently, we found that ZEB2 is upregulated in murine cardiomyocytes shortly after an ischemic event, but returns to baseline levels as the disease progresses. Gain- and loss-of-function genetic mouse models revealed the necessity and sufficiency of ZEB2 to maintain proper cardiac function after ischemic injury. We show that cardiomyocyte-specific ZEB2 overexpression (Zeb2 cTG) protected from ischemia-induced diastolic dysfunction and attenuated the structural remodeling of the heart. Moreover, RNA-sequencing of Zeb2 cTG hearts post-injury implicated ZEB2 in the regulation of numerous calcium-handling and contractile-related genes when compared to wildtype mice. Mechanistically, ZEB2 overexpression increased the phosphorylation of phospholamban (PLN) at both serine-16 and threonine-17, implying enhanced activity of the sarcoplasmic reticulum Ca2+-ATPase (SERCA2A), thereby augmenting contractility. Improved cardiac function in ZEB2-overexpressing hearts correlated with higher expression of several sarcomeric proteins like myosin-binding protein C3 (MYBPC3), desmin (DES) and myosin regulatory light chain 2 (MYL2) further contributing to the observed protective phenotype. Furthermore, we observed a decrease in the activity of Ca2+-depended calcineurin/NFAT signaling, which is the main driver of pathological cardiac remodeling. Conversely to Zeb2 cTg mice, loss of ZEB2 from cardiomyocytes perturbed the expression of calcium- and contractile-related proteins and increased the activity of calcineurin/NFAT pathway, exacerbating cardiac dysfunction. Together, we show that ZEB2 is a central regulator of contractile and calcium-handling components, consequently mediating contractility in the mammalian heart. Further mechanistic understanding of the role of ZEB2 in the regulation of calcium homeostasis in cardiomyocytes is a critical step towards the development of improved therapies for various forms of heart failure. Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): DR. E. Dekker from Dutch Heart Foundation


2017 ◽  
Vol 113 (6) ◽  
pp. 633-643 ◽  
Author(s):  
Jihe Li ◽  
Keyvan Yousefi ◽  
Wen Ding ◽  
Jayanti Singh ◽  
Lina A. Shehadeh

Aims Cardiac myocyte hypertrophy, the main compensatory response to chronic stress in the heart often progresses to a state of decompensation that can lead to heart failure. Osteopontin (OPN) is an effector for extracellular signalling that induces myocyte growth and fibrosis. Although increased OPN activity has been observed in stressed myocytes and fibroblasts, the detailed and long term effects of blocking OPN signalling on the heart remain poorly defined. Targeting cardiac OPN protein by an RNA aptamer may be beneficial for tuning down OPN pathologic signalling. We aimed to demonstrate the therapeutic effects of an OPN RNA aptamer on cardiac dysfunction. Methods and results In vivo, we show that in a mouse model of pressure overload, treating at the time of surgeries with an OPN aptamer prevented cardiomyocyte hypertrophy and cardiac fibrosis, blocked OPN downstream signalling (PI3K and Akt phosphorylation), reduced expression of extracellular matrix (Lum, Col3a1, Fn1) and hypertrophy (Nppa, Nppb) genes, and prevented cardiac dysfunction. Treating at two months post-surgeries with the OPN aptamer reversed cardiac dysfunction and fibrosis and myocyte hypertrophy. While genetic homozygous deletion of OPN reduced myocardial wall thickness, surprisingly cardiac function and myocardial fibrosis, specifically collagen deposition and myofibroblast infiltration, were worse compared with wild type mice at three months of pressure overload. Conclusion Taken together, these data demonstrate that tuning down cardiac OPN signalling by an OPN RNA aptamer is a novel and effective approach for preventing cardiac hypertrophy and fibrosis, improving cardiac function, and reversing pressure overload-induced heart failure.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Denis A. Lebedev ◽  
Elena A. Lyasnikova ◽  
Elena Yu. Vasilyeva ◽  
Nikolai P. Likhonosov ◽  
Maria Yu. Sitnikova ◽  
...  

Type 2 diabetes mellitus (T2DM) and chronic heart failure (HF) have close association, and several biomarkers have been studied to better understand this association and improve prediction of HF in T2DM. Furthermore, in recent clinical trials, sodium glucose cotransporter 2 inhibitors (SGLT2i), glucose-lowering drugs, improved HF outcomes. The objective of the present study was to evaluate association between circulating biomarkers of fibrosis and incidence of HF with preserved ejection fraction (HFpEF) in patients with T2DM receiving sodium glucose cotransporter 2 inhibitors (SGLT2i). Materials and Methods. At baseline, transthoracic echocardiography and laboratory assessment of N-terminal fragment of the brain natriuretic peptide (Nt-proBNP), soluble suppression of tumorigenesis-2 (sST2), galectin-3 (Gal-3), C-terminal propeptide of procollagen type I (PICP), N-terminal propeptide of procollagen type III (PIIINP), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of matrix proteinase-1 (TIMP-1) were done. After 3 years of follow-up, information about HF events (hospitalization for HF, established HF in outpatient department by a cardiologist) was obtained. Results. Seventy-two patients were included in the study. The mean age was 57 (49.7; 63.2) years; 44% were female. Most patients had T2DM for more than 4 years. All patients were overweight or had obesity, and 93% patients had arterial hypertension (AH). After 3 years of follow-up, HFpEF was established in 21% patients. Patients were divided into two groups according to the presence of HFpEF, and baseline characteristics were compared. Patients with HF were older and had longer diabetes and AH duration and higher Nt-proBNP, Gal-3, PIIINP, and PICP levels at baseline than patients without HF (all p < 0.05 ). Gal − 3 > 10  ng/ml ( OR = 2.25 ; 95% CI, 1.88–5.66; p = 0.01 ) and NT − pro − BNP > 80  pg/ml ( OR = 2.64 ; 95% CI, 1.56–4.44; p = 0.001 ) were associated with increased risk of HF incidence. Age > 60 years, diabetes duration > 10 years, and presence of abdominal obesity were independent predictors of HFpEF as well. Conclusions. T2DM patients treated with SLGT2i, who developed HFpEF after 3 years of follow-up, had higher PICP, PIIINP, Gal-3, and NT-proBNP serum concentrations at baseline, and Gal-3 level was an independent predictor of HFpEF.


Sign in / Sign up

Export Citation Format

Share Document