Abstract 44: VEGF Inhibitor-induced Vascular Dysfunction Is Ameliorated By PARP/TRPM2 Inhibition

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Karla B Neves ◽  
Rheure Alves-lopes ◽  
Ninian Lang ◽  
Augusto C Montezano ◽  
Rhian M Touyz

Hypertension is a common unwanted effect of VEGF inhibitors (VEGFi), which are used as anti-angiogenic drugs in cancer treatment. Clinical observations suggest that the combination of VEGFi with another anti-cancer drug, olaparib (PARP inhibitor [PARPi]), may attenuate the development of hypertension. However putative vascular mechanisms are unknown. PARP plays a major role in the activation of TRPM2, a redox-sensitive Ca 2+ channel, which is associated with hypertension-induced vascular dysfunction. We hypothesized that PARPi attenuates VEGFi-induced vascular injury through TRPM2/Ca 2+ -dependent pathways. Human vascular smooth muscle cells (hVSMC), human aortic endothelial cells (HAEC), and mouse mesenteric arteries were studied. Cells/arteries were exposed to axitinib (VEGFi) alone (3μM) or in combination with olaparib (1μM). Wire myography was used to assess vascular function. Axitinib reduced ACh-induced vasodilation (% relaxation: 70.5 [Ct] vs. 34.8 [Axi]), an effect blocked by olaparib. U46619- and ET-1-induced vasoconstriction were increased by axitinib (% KCl- U4 : 101.2 [Ct] vs. 141.4 [Axi]; ET-1 : 122.6 [Ct] vs. 152.5 [Axi]), an effect not observed with axitinib plus olaparib. TRPM2 channel blocker (8-Br-cADPR; 1μM) attenuated the hypercontractile effects and endothelial dysfunction induced by axitinib. Axitinib increased ROS production in hVSMC (RUL: 0.8±0.2 [Ct] vs. 1.1±0.09 [Axi]) and HAEC (0.7±0.4 [Ct] vs. 1.2±0.1 [Axi]), stimulated phosphorylation of the inhibitory site of eNOS (a.u.: 0.99±0.35 [Ct] vs. 1.35±0.10 [Axi]) and induced exaggerated Ca 2+ influx (AUC: 17541±4708 [Ct] vs. 22249±1438 [Axi]) in hVSMC. These effects were blocked by olaparib and 8-Br-cADPR. Axitinib also induced phosphorylation of MLC20 in hVSMC (a.u.: 0.028±0.02 [Ct] vs. 0.04±0.01 [Axi]) and aorta (a.u.: 0.3±0.01 [Ct] vs. 0.5±0.001 [Axi]). Our data indicate that PARP/TRPM2 inhibition attenuates axitinib-mediated vascular dysfunction and normalizes impaired hVSMC and HAEC signalling induced by VEGFi. We define a putative vasoprotective effect of olaparib that may ameliorate vascular injury and hypertension induced by VEGFi in cancer treatment.

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Livia L Camargo ◽  
Augusto C Montezano ◽  
Adam Harvey ◽  
Sofia Tsiropoulou ◽  
Katie Hood ◽  
...  

In hypertension, activation of NADPH oxidases (Noxs) is associated with oxidative stress and vascular dysfunction. The exact role of each isoform in hypertension-associated vascular injury is still unclear. We investigated the compartmentalization of Noxs in VSMC from resistance arteries of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Expression of Nox1 and Nox4 was increased in SHR cells (96.6±28.7% and 48.2±21.2% vs WKY, p<0.05), as well as basal ROS levels measured by chemiluminescence (110.2±26.4% vs WKY, p<0.05) and amplex red (105.2±33.2% vs WKY, p<0.05). Phosphorylation of unfolded protein response activators, PERK and IRE1α, and expression of ER chaperone BiP were elevated in SHR cells (p<0.05 vs WKY), indicating activation of ER stress response. Immunoblotting after organelle fractionation demonstrated that Noxs are expressed in an organelle-specific manner, with Nox1, 2 and 4 present in plasma membrane, ER and nucleus, but not in mitochondria. In SHR cells, NoxA1ds (Nox1 inhibitor, 10μM) and GKT136901 (Nox1/4 inhibitor, 10μM) decreased AngII-induced ROS levels (p<0.001 vs Ctl). Additionally, mito-tempol (mitochondrial-targeted antioxidant, 50nM) and 4-PBA (ER stress inhibitor, 1mM) decreased basal ROS levels in SHR cells (p<0.05 vs Ctl). Furthermore, oxidation of the antioxidant enzymes Peroxiredoxins (Prx) was increased in SHRSP compared to WKY (2.51±0.14 vs 0.56±0.07, p<0.001). One-dimensional isoelectric focusing revealed that cytosolic Prx2 and mitochondrial Prx3 were more oxidized in SHRSP than WKY cells. Using a biotin-tagged dimedone-based probe (DCP-Bio) we identified oxidation of ER stress proteins BiP and IRE1. To investigate the effect of protein oxidation in vascular function, vascular reactivity was evaluated in isolated mesenteric arteries. Inhibition of general oxidation (DTT 1mM; Emax: 111.7±33.1) and peroxiredoxin (Conoidin A 10nM; Emax: 116.0±7.3) reduces vascular contraction in response to noradrenalin in WKY rats (Emax: 166.6±30.2; p<0.05). These findings suggest an important role for Nox1/4 in redox-dependent organelle dysfunction and post-translational modification of proteins, processes that may play an important role in vascular dysfunction in hypertension.


2004 ◽  
Vol 287 (1) ◽  
pp. H40-H45 ◽  
Author(s):  
Sukrutha Veerareddy ◽  
Christy-Lynn M. Cooke ◽  
Philip N. Baker ◽  
Sandra T. Davidge

Oxidative stress mediated by prooxidants has been implicated in the pathogenesis of vascular disorders. However, the effect of prooxidants on myogenic regulation of vascular function and the differential influence of gender is not known. SOD, an intracellular enzyme, restricts excess prooxidant levels and may limit vascular dysfunction. We therefore tested the effects of Cu,Zn SOD deficiency on vascular tone in both male and female SOD knockout (SOD−/−) mice. We hypothesized that myogenic tone would be enhanced in SOD−/− mice by excess prooxidants compared with wild-type control mice. Indeed, resistance-sized mesenteric arteries from SOD−/− mice exhibited enhanced myogenic tone compared with control mice. Myogenic tone was lower in female than male control mice. Interestingly, this gender effect was absent in SOD−/− mice, such that myogenic tone of mesenteric arteries from females was equated to that of arteries from males. Furthermore, the pathways that modulate myogenic tone were diverse. In both male and female control mice, inhibition of prostaglandin H synthase (PGHS) and nitric oxide synthase (NOS) pathways enhanced myogenic tone. In female SOD−/− mice, inhibition of PGHS and NOS pathways enhanced myogenic tone to a greater extent compared with control mice. Conversely, in male SOD−/− mice, NOS and PGHS inhibition did not alter tone and only inhibition of gap junctions enhanced myogenic tone. In conclusion, this study revealed enhanced myogenic tone in SOD−/− mice compared with control mice. Furthermore, Cu,Zn SOD deficiency particularly enhanced myogenic tone in female mice such that their vascular tone attained the level of male SOD−/− mice, possibly mediated by prooxidants.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Sofia Tsiropoulou ◽  
Augusto C Montezano ◽  
Alan Scott ◽  
Richard J Burchmore ◽  
Rhian M Touyz

In hypertension (HTN) mechanisms whereby protein oxidation regulates vascular function remain unclear. We hypothesise that increased ROS promote a shift of oxidative post-translational protein modifications from reversible to irreversible forms, leading to aberrant redox signalling and vascular injury. VSMC from mesenteric arteries of normotensive (WKY) and hypertensive (SHRSP) rats were stimulated with Ang II (10 -7 M) in the presence/absence of PEG-catalase (1000U/ml) or tempol (10 -5 M). Protein carbonylation was assessed by oxyblot and protein sulfenylation by DCP-Rho1 fluorescent probe. Protein tyrosine phosphatase (PTP)-oxidation, peroxiredoxin hyperoxidation (PRXSO3), γH2AX, Bcl2 levels were assessed by immunoblotting. DiGE and CyDye labelling screened for reversibly oxidised thiol proteome. Irreversible carbonylation and PRXSO3 were increased in SHRSP (fold change (FC)=1.29 and 2.77, p<0.05). Ang II-stimulation did not alter carbonylation levels. Reversible sulfenylation and thiol-proteome oxidation were reduced in SHRSP (FC=-1.18, p<0.05 and 13.6% (253 spots)). Ang II-treatment increased sulfenylation in WKY (FC=1.08, p<0.05) and SHRSP (FC=1.23, p<0.001); an effect inhibited by catalase. Reversible PTP oxidation was increased in WKY and SHRSP (FC=1.92 and 2.42, p<0.05), versus irreversible levels. Irreversible PTP oxidation tended to be higher in SHRSP. Ang II increased reversible PTP oxidation only in WKY (FC=1.27, p<0.05) and it was prevented by tempol. Ang II-stimulation increased protein levels of γH2AX (DNA damage) (FC=1.76, p<0.05) and Bcl2 (anti-apoptotic) (FC=2, p<0.05) in WKY. Proteomic data, filtered for FC>2, detected 1777 spots with 21% being differentially oxidised between WKY and SHRSP. Candidate proteins differentially oxidized between WKY and SHRSP include annexin A1 (-2.29) and galectin-1 (2.83). These results demonstrate altered redox status in HTN characterised by increased protein hyperoxidation and decreased reversible oxidation, in combination with decreased anti-oxidant capacity. Moreover, our findings identify novel candidate oxidized proteins implicated in VSMC motility, proliferation and signalling which may contribute to oxidative vascular injury in HTN.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Jonnelle M Edwards ◽  
Sarah Galla ◽  
Nicole R Bearss ◽  
Blair Mell ◽  
Xi Cheng ◽  
...  

Mitochondria evolved from bacteria and use N-formylated peptides (NFPs) to synthetize protein. Bacterial and mitochondrial NFPs activate formyl peptide receptor 1 (FPR-1) and lead to vascular injury. We previously observed that Dahl Salt Sensitive rats (S) fed a low-salt (LS, 0.3% NaCl) diet presented spontaneous hypertension, vascular dysfunction, and overexpression of FPR-1 in arteries when compared to Dahl Salt Resistant (R) rats. High salt (HS, 2% NaCl) diet worsened these phenotypes in S rats. Interestingly, HS diet induced leaky gut and amoxicillin (AMO) treatment decreased BP in S-HS. Due to the dual sources of NFPs (microbiota and host mitochondria), we hypothesized that cell death-derived mitochondria and/or leaky gut-derived bacterial NFPs lead to FPR-1 activation, vascular injury and elevated BP in S rats independent of HS diet. For this, we used flow cytometry to measure cell necrosis and early and late apoptosis in kidney, bone marrow-derived macrophages and mesenteric resistance arteries (MRA) from male S and R rats (8-week old) on a LS diet. Zonulin, a biomarker for leaky gut, was measured in plasma. In another group, rats were treated with FPR-1 antagonist [Cyclosporin H (CsH), 0.3 mg/kg/day, osmotic mini-pump, 14 days], vehicle (VEH) or received water with AMO (5 mg/kg/day) for 21 days to deplete bacteria. BP was measured by telemetry and vascular function and structure were assessed in MRA. S rats presented increased kidney cell necrosis (R: 3.8±0.3 vs. S: 5.3±0.5* %). CsH decreased spontaneous elevation of BP [Diastolic: R+VEH: 77±2.7 vs. R+CsH: 81±1.2 vs. S+VEH: 126±3.0* vs. S+CsH:115±2.7 # ] and vascular hypercontractility [KCl (120mM): R+VEH: 9.4±1 vs. R+CsH: 10.2±0.4; S+VEH: 15.5±0.9* vs. S+CsH:11.7±0.8 # mN; Phenylephrine (10μM): R+VEH: 9.3±1 vs. R+CsH: 9.7±1; S+VEH: 14.5±1*vs. S+CsH: 11.4±0.6 # mN) in S-LS rats. AMO did not change vascular contraction or BP. Leaky gut was not observed in Dahl S-LS diet. In conclusion, FPR-1 can serve as a causative agent for the spontaneous elevation of BP and kidney-derived mitochondria, but not gut-derived microbiota, are the main source for NFPs.


2000 ◽  
Vol 84 (3) ◽  
pp. 285-296 ◽  
Author(s):  
Kathleen Holemans ◽  
Robert Gerber ◽  
Ivan O'Brien-Coker ◽  
Anthony Mallet ◽  
Rieta Van Bree ◽  
...  

Adult offspring of severely diabetic pregnant rats are insulin resistant and display cardiovascular dysfunction. When pregnant they develop mild hyperglycaemia. Diets high in saturated fat have been implicated in the development of cardiovascular disease and vascular dysfunction. In the present study we have determined vascular function in small mesenteric arteries from offspring of normal (OC) and diabetic (OD) rats fed standard chow and offspring of diabetic rats fed a diet high in saturated fats (OD-HF) from weaning to adulthood, and throughout their subsequent pregnancies. OD rats displayed an increased sensitivity to noradrenaline (P < 0·05) and impaired sensitivity to the endothelium-dependent vasodilator, acetylcholine. The component of acetylcholine-induced relaxation attributable to endothelium-derived hyperpolarizing factor was reduced in OD-HF rats. Pregnant OD rats also demonstrated impaired maximum relaxation to acetylcholine (pregnant OD rats v. pregnant OC rats P < 0·05). In pregnant OD-HF rats noradrenaline sensitivity was enhanced and endothelium-dependent relaxation further reduced (pregnant OD-HF rats v. pregnant OC rats P < 0·001). The isoprostane, 8-epi-prostaglandin F2α, a marker of oxidative stress, was increased in pregnant OD rats (pregnant OD rats v. pregnant OC rats P < 0·001) and further increased in pregnant OD-HF rats (pregnant OD-HF rats v. pregnant OD rats P < 0·05). We conclude that a high-saturated-fat diet leads to deterioration in specific components of vascular function in OD rats. When pregnant, vascular function of OD-HF rats is further compromised. Pregnancy in the OD rats is associated with a striking increase in a marker of oxidative stress, which increases further if the saturated fat intake is raised.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Francisco J Rios ◽  
Augusto C Montezano ◽  
Lucas Van Der Mey ◽  
Heather Y Small ◽  
Carmine Savoia ◽  
...  

VEGF/VEGFR inhibitors, used as anti-angiogenic drugs to treat cancer, induce severe hypertension. Molecular mechanisms whereby VEGF inhibitors cause hypertension are unclear, but nitric oxide (NO) and oxidative stress may be involved. We questioned whether reactive oxygen species (ROS) and Ang II, important regulators of vascular function in hypertension, also play a role in VEGF inhibitor-induced vascular dysfunction. Human microvascular endothelial cells (HMECs) were stimulated with vatalanib (VAT-VEGFR inhibitor) and gefitinib (GEF-EGFR inhibitor) in the absence/presence of Ang II. Activation of eNOS and MAPKs were assessed by immunoblotting. Antioxidant enzyme mRNA was analysed by qPCR. Microparticle levels were measured by flow cytometry. Endothelial microparticles, biomarkers of endothelial damage, tend to increase in subjects treated with VEGFR inhibitors. Phosphorylation of eNOS activation site (Ser1177) (28.3% ± 7.1) was decreased by VAT, while no changes were observed after exposure of HMECs to GEF (p<0.05). VAT decreased mRNA expression of Nox4 (0.5 ± 0.2) and H2O2-regulating antioxidants enzymes such as catalase (0.4 ± 0.1) and glutathione peroxidase (0.4 ± 0.1), while increased mRNA levels of Nox5 (3.35±1.1) (p<0.05 vs. veh). Ang II stimulation increased eNOS (171.2% ± 17.4) and ERK1/2 (177.5% ± 38.5) activation (p<0.05); all effects were blocked only by GEF. Inhibition of VEGFR also blocked Ang II effects on SOD1 (1.33 ± 0.1), HO-1 (1.6 ± 0.3) and NQO1 (1.6 ± 0.3) mRNA levels (p<0.05). In addition, Ang II increased Nox4 mRNA expression through VEGFR-dependent mechanisms. VEGFR1/2 and AT2R, but not AT1R, were expressed in HMEC. Ang II effects on eNOS phosphorylation were inhibited by PD123319 (AT2R antagonist) but not by losartan (AT1R antagonist). In conclusion, our data identify novel mechanisms whereby AngII, possibly through AT2R-dependent VEGFR transactivation, regulates eNOS activation, MAPK signalling and H2O2-related antioxidant enzymes. In addition to changes in NO availability, VEGFR inhibition may interfere with the redox status of endothelial cells, leading to vascular dysfunction and hypertension.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Jessica L Faulkner ◽  
Derrian Wright ◽  
Simone Kennard ◽  
Galina Antonova ◽  
Iris Z Jaffe ◽  
...  

Placental ischemia, an initiating event of preeclampsia (PE), increases plasma leptin levels. We recently developed a model of midgestation (gestation day (GD)11-18) leptin infusion mimicking the midgestation rise in leptin levels of PE patients. Our previous work demonstrates that deletion of endothelial mineralocorticoid receptors (ECMR) improves markers of vascular dysfunction in leptin-infused female mice. We hypothesized vascular function improvement with ECMR deletion ablates hypertension and fetal growth restriction in pregnant leptin-infused mice. Pregnant ECMR +/+ (WT) and ECMR -/- (KO) mice were infused with vehicle or leptin by osmotic pump (lep, 0.9mg/kg/day, s.c.) on GD11-18 while implanted with radiotelemeters for conscious blood pressure (BP) measurement and wire myography of thoracic aorta and 2 nd order mesenteric arteries at GD18 (*=P<0.05). Leptin infusion did not decrease maternal weight in any groups. Leptin decreased pup weight (0.86±0.04g WT vs 0.52±0.11 WT+lep*) and placental efficiency (pup/placenta ratio) (9.7±0.7 WT vs 7.9±0.6 WT+lep*) in WT pregnant mice. ECMR deletion prevented leptin-mediated decreases in pup weight (0.91±0.06g KO vs 1.0±0.07 KO+lep) and placental efficiency (9.6±0.5 KO vs 9.4±1.2 KO+lep). Mean arterial pressure (BP) increased in leptin-infused WT (102±3mmHg WT vs 120±12 WT+lep*), but not KO (107±2 KO vs 106±8 KO+lep), mice from GD11-18. Leptin infusion reduced acetylcholine-mediated relaxation in both aorta and mesenteric arteries of WT* and constriction to KCl in mesenteric arteries in WT*, but not KO, pregnant mice (2-way ANOVA, repeated measures). Leptin increased plasma endothelin-1 (ET-1, 1.1±0.3 pg/ml WT vs 4.4±1.8 WT+lep*), placental mRNA expression of prepro-ET-1 (1.9±0.3-fold change from WT*) and ET-1 converting enzyme-1 (1.6±0.3-fold change from WT*) in pregnant WT mice. Leptin infusion also increased adrenal aldosterone-synthase protein (1.4±0.4 WT ratio/β actin vs 3.2±0.3 WT+lep*) and angiotensin II type 1 receptor b (3.5±0.8-fold change from WT*) mRNA in pregnant mice. Collectively, these data indicate that leptin infusion induces hypertension and fetal growth restriction in pregnant mice due to vascular dysfunction and increased ECMR activation in pregnant mice.


2020 ◽  
Vol 318 (6) ◽  
pp. R1047-R1057
Author(s):  
Elizabeth F. Sutton ◽  
Mary Gemmel ◽  
Judith Brands ◽  
Marcia J. Gallaher ◽  
Robert W. Powers

Preeclampsia is a spontaneously occurring, pregnancy-specific syndrome that is clinically diagnosed by new onset hypertension and proteinuria. Epidemiological evidence describes an association between a history of preeclampsia and increased risk for cardiovascular disease in later life; however, the mechanism(s) driving this relationship are unclear. Our study aims to leverage a novel preeclampsia-like mouse model, the C1q−/− model, to help elucidate the acute and persistent vascular changes during and following a preeclampsia-like pregnancy. Female C57BL/6J mice were mated to C1q−/− male mice to model a preeclampsia-like pregnancy (“PE-like”), and the maternal cardiovascular phenotype (blood pressure, renal function, systemic glycocalyx, and ex vivo vascular function) was assessed in late pregnancy and postpartum at 6 and 10 mo of age. Uncomplicated, normotensive pregnancies (female C57BL/6J bred to male C57BL/6J mice) served as age-matched controls. In pregnancy, PE-like dams exhibited increased systolic and diastolic pressure during mid- and late gestation, renal dysfunction, fetal growth restriction, and reduced placental efficiency. Ex vivo wire myography studies of mesenteric arteries revealed severe pregnancy-specific endothelial-dependent and -independent vascular dysfunction. At 3 and 7 mo postpartum (6 and 10 mo old, respectively), hypertension resolved in PE-like dams, whereas mild vascular dysfunction persisted at 3 mo postpartum. In conclusion, the female C57BL/6J-by-male C57BL/6J C1q−/− model recapitulates many aspects of the human preeclampsia syndrome in a low-risk, wild-type female mouse. The pregnancy-specific phenotype results in systemic maternal endothelial-dependent and -independent vascular dysfunction that persists postpartum.


2011 ◽  
Vol 110 (4) ◽  
pp. 1073-1082 ◽  
Author(s):  
J. S. Morton ◽  
C. F. Rueda-Clausen ◽  
S. T. Davidge

There is now a demonstrated association between low birth weight and increased mortality later in life. Changes in fetal development may program the cardiovascular system and lead to an increased risk of cardiovascular diseases later in life. In addition, aging is a risk factor for vascular endothelial-dependent dysfunction. However, the impact of being born intrauterine growth restricted (IUGR) on the normal aging mechanisms of vascular dysfunction is not clear. We hypothesized that IUGR would cause changes in vascular function that would affect the mechanisms of flow-induced vasodilation later in life in an age- or sex-dependent manner. To create an IUGR model, pregnant Sprague-Dawley rats were placed in a hypoxic (11.5% O2) or control (room air, 21% O2) environment from days 15 to 21 of pregnancy. Both male and female offspring were investigated at 4 or 12 mo of age. Vascular function was assessed in small mesenteric arteries using flow-induced vasodilation, a physiological stimuli of vasodilation, in a pressure myograph. Flow-induced vasodilation was unaffected at a young age, but was significantly reduced in aging IUGR compared with aging controls ( P < 0.05). Underlying vasodilator mechanisms were altered such that nitric oxide-mediated vasodilation was abolished in both young adult and aging IUGR males and females and in aging control females ( P > 0.05). Endothelium-derived hyperpolarizing factor-mediated vasodilation was maintained in all groups ( P < 0.01). A change in the mechanisms of vasodilation occurring at an earlier age in IUGR offspring may predispose them to develop cardiovascular diseases as an aging adult.


2005 ◽  
Vol 289 (1) ◽  
pp. H206-H211 ◽  
Author(s):  
Hong Ding ◽  
Andrew G. Howarth ◽  
Malarvannan Pannirselvam ◽  
Todd J. Anderson ◽  
David L. Severson ◽  
...  

The Type 2 diabetic db/ db mouse experiences vascular dysfunction typified by changes in the contraction and relaxation profiles of small mesenteric arteries (SMAs). Contractions of SMAs from the db/ db mouse to the α1-adrenoceptor agonist phenylephrine (PE) were significantly enhanced, and acetylcholine (ACh)-induced relaxations were significantly depressed. Drug treatment of db/ db mice with a nonthiazolidinedione peroxisome prolifetor-activated receptor-γ agonist and insulin sensitizing agent 2-[2-(4-phenoxy-2-propylphenoxy)ethyl]indole-5-acetic acid (COOH) completely prevented the changes in endothelium-dependent relaxation, but, with the discontinuation of therapy, endothelial dysfunction returned. Dysfunctional SMAs were found to specifically upregulate the expression of a 35-kDa isoform of sarcolemmal membrane-associated protein (SLMAP), which is a component of the excitation-contraction coupling apparatus and implicated in the regulation of membrane function in muscle cells. Real-time PCR revealed high SLMAP mRNA levels in the db/ db microvasculature, which were markedly downregulated during COOH treatment but elevated again when drug therapy was discontinued. These data reveal that the microvasculature in db/ db mice undergoes significant changes in vascular function with the endothelial component of vascular dysfunction specifically correlating with the overexpression of SLMAP. Thus changes in SLMAP expression may be an important indicator for microvascular disease associated with Type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document