scholarly journals Paternal deficiency of complement component C1q leads to a preeclampsia-like pregnancy in wild-type female mice and vascular adaptations postpartum

2020 ◽  
Vol 318 (6) ◽  
pp. R1047-R1057
Author(s):  
Elizabeth F. Sutton ◽  
Mary Gemmel ◽  
Judith Brands ◽  
Marcia J. Gallaher ◽  
Robert W. Powers

Preeclampsia is a spontaneously occurring, pregnancy-specific syndrome that is clinically diagnosed by new onset hypertension and proteinuria. Epidemiological evidence describes an association between a history of preeclampsia and increased risk for cardiovascular disease in later life; however, the mechanism(s) driving this relationship are unclear. Our study aims to leverage a novel preeclampsia-like mouse model, the C1q−/− model, to help elucidate the acute and persistent vascular changes during and following a preeclampsia-like pregnancy. Female C57BL/6J mice were mated to C1q−/− male mice to model a preeclampsia-like pregnancy (“PE-like”), and the maternal cardiovascular phenotype (blood pressure, renal function, systemic glycocalyx, and ex vivo vascular function) was assessed in late pregnancy and postpartum at 6 and 10 mo of age. Uncomplicated, normotensive pregnancies (female C57BL/6J bred to male C57BL/6J mice) served as age-matched controls. In pregnancy, PE-like dams exhibited increased systolic and diastolic pressure during mid- and late gestation, renal dysfunction, fetal growth restriction, and reduced placental efficiency. Ex vivo wire myography studies of mesenteric arteries revealed severe pregnancy-specific endothelial-dependent and -independent vascular dysfunction. At 3 and 7 mo postpartum (6 and 10 mo old, respectively), hypertension resolved in PE-like dams, whereas mild vascular dysfunction persisted at 3 mo postpartum. In conclusion, the female C57BL/6J-by-male C57BL/6J C1q−/− model recapitulates many aspects of the human preeclampsia syndrome in a low-risk, wild-type female mouse. The pregnancy-specific phenotype results in systemic maternal endothelial-dependent and -independent vascular dysfunction that persists postpartum.

Author(s):  
Mary Gemmel ◽  
Elizabeth F Sutton ◽  
Judith Brands ◽  
Lauren Burnette ◽  
Marcia J Gallaher ◽  
...  

Preeclampsia is a spontaneously occurring pregnancy complication diagnosed by new onset hypertension and end-organ dysfunction with or without proteinuria. This pregnancy-specific syndrome contributes to maternal morbidity and mortality and can have detrimental effects on fetal outcome. Preeclampsia is also linked to increased risk of maternal cardiovascular disease throughout life. Despite intense investigation of this disorder, few treatment options are available. The aim of this study was to investigate the potential therapeutic effects of maternal L-citrulline supplementation on pregnancy-specific vascular dysfunction in the ♀ C57BL/6J x ♂ C57BL/6J C1q-/- preeclampsia-like mouse model. L-citrulline is a non-essential amino acid that is converted to L-arginine to promote smooth muscle and blood vessel relaxation and improve nitric oxide (NO) mediated vascular function. To model a preeclampsia-like pregnancy, female C57BL/6J mice were mated to C1q-/- male mice, and a subset of dams were supplemented with L-citrulline throughout pregnancy. Blood pressure, systemic vascular glycocalyx, and ex-vivo vascular function were investigated in late pregnancy, and postpartum at 6 and 10 months of age. Main findings show that L-citrulline reduced blood pressure, increased vascular glycocalyx volume and rescued ex-vivo vascular function at gestation day 17.5 in this preeclampsia-like model. The vascular benefit of L-citrulline also extended postpartum, with improved vascular function and glycocalyx measures at 6 and 10 months of age. L-citrulline mediated vascular improvements appear, in part, attributable to NO pathway signaling. Taken together, L-citrulline supplementation during pregnancy appears to have beneficial effects on maternal vascular health which may have translational implications for improved maternal cardiovascular health.


2009 ◽  
Vol 117 (3) ◽  
pp. 129-138 ◽  
Author(s):  
Emily M. Segar ◽  
Andrew W. Norris ◽  
Jian-Rong Yao ◽  
Shanming Hu ◽  
Stacia L. Koppenhafer ◽  
...  

ODM (offspring of diabetic mothers) have an increased risk of developing metabolic and cardiovascular dysfunction; however, few studies have focused on the susceptibility to disease in offspring of mothers developing diabetes during pregnancy. We developed an animal model of late gestation diabetic pregnancy and characterized metabolic and vascular function in the offspring. Diabetes was induced by streptozotocin (50 mg/kg of body weight, intraperitoneally) in pregnant rats on gestational day 13 and was partially controlled by twice-daily injections of insulin. At 2 months of age, ODM had slightly better glucose tolerance than controls (P<0.05); however, by 6 months of age this trend had reversed. A euglycaemic–hyperinsulinamic clamp revealed insulin resistance in male ODM (P<0.05). In 6–8-month-old female ODM, aortas had significantly enhanced contractility in response to KCl, ET-1 (endothelin-1) and NA (noradrenaline). No differences in responses to ET-1 and NA were apparent with co-administration of L-NNA (NG-nitro-L-arginine). Relaxation in response to ACh (acetylcholine), but not SNP (sodium nitroprusside), was significantly impaired in female ODM. In contrast, males had no between-group differences in response to vasoconstrictors, whereas relaxation to SNP and ACh was greater in ODM compared with control animals. Thus the development of diabetes during pregnancy programmes gender-specific insulin resistance and vascular dysfunction in adult offspring.


2011 ◽  
Vol 110 (4) ◽  
pp. 1073-1082 ◽  
Author(s):  
J. S. Morton ◽  
C. F. Rueda-Clausen ◽  
S. T. Davidge

There is now a demonstrated association between low birth weight and increased mortality later in life. Changes in fetal development may program the cardiovascular system and lead to an increased risk of cardiovascular diseases later in life. In addition, aging is a risk factor for vascular endothelial-dependent dysfunction. However, the impact of being born intrauterine growth restricted (IUGR) on the normal aging mechanisms of vascular dysfunction is not clear. We hypothesized that IUGR would cause changes in vascular function that would affect the mechanisms of flow-induced vasodilation later in life in an age- or sex-dependent manner. To create an IUGR model, pregnant Sprague-Dawley rats were placed in a hypoxic (11.5% O2) or control (room air, 21% O2) environment from days 15 to 21 of pregnancy. Both male and female offspring were investigated at 4 or 12 mo of age. Vascular function was assessed in small mesenteric arteries using flow-induced vasodilation, a physiological stimuli of vasodilation, in a pressure myograph. Flow-induced vasodilation was unaffected at a young age, but was significantly reduced in aging IUGR compared with aging controls ( P < 0.05). Underlying vasodilator mechanisms were altered such that nitric oxide-mediated vasodilation was abolished in both young adult and aging IUGR males and females and in aging control females ( P > 0.05). Endothelium-derived hyperpolarizing factor-mediated vasodilation was maintained in all groups ( P < 0.01). A change in the mechanisms of vasodilation occurring at an earlier age in IUGR offspring may predispose them to develop cardiovascular diseases as an aging adult.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Livia L Camargo ◽  
Augusto C Montezano ◽  
Adam Harvey ◽  
Sofia Tsiropoulou ◽  
Katie Hood ◽  
...  

In hypertension, activation of NADPH oxidases (Noxs) is associated with oxidative stress and vascular dysfunction. The exact role of each isoform in hypertension-associated vascular injury is still unclear. We investigated the compartmentalization of Noxs in VSMC from resistance arteries of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Expression of Nox1 and Nox4 was increased in SHR cells (96.6±28.7% and 48.2±21.2% vs WKY, p<0.05), as well as basal ROS levels measured by chemiluminescence (110.2±26.4% vs WKY, p<0.05) and amplex red (105.2±33.2% vs WKY, p<0.05). Phosphorylation of unfolded protein response activators, PERK and IRE1α, and expression of ER chaperone BiP were elevated in SHR cells (p<0.05 vs WKY), indicating activation of ER stress response. Immunoblotting after organelle fractionation demonstrated that Noxs are expressed in an organelle-specific manner, with Nox1, 2 and 4 present in plasma membrane, ER and nucleus, but not in mitochondria. In SHR cells, NoxA1ds (Nox1 inhibitor, 10μM) and GKT136901 (Nox1/4 inhibitor, 10μM) decreased AngII-induced ROS levels (p<0.001 vs Ctl). Additionally, mito-tempol (mitochondrial-targeted antioxidant, 50nM) and 4-PBA (ER stress inhibitor, 1mM) decreased basal ROS levels in SHR cells (p<0.05 vs Ctl). Furthermore, oxidation of the antioxidant enzymes Peroxiredoxins (Prx) was increased in SHRSP compared to WKY (2.51±0.14 vs 0.56±0.07, p<0.001). One-dimensional isoelectric focusing revealed that cytosolic Prx2 and mitochondrial Prx3 were more oxidized in SHRSP than WKY cells. Using a biotin-tagged dimedone-based probe (DCP-Bio) we identified oxidation of ER stress proteins BiP and IRE1. To investigate the effect of protein oxidation in vascular function, vascular reactivity was evaluated in isolated mesenteric arteries. Inhibition of general oxidation (DTT 1mM; Emax: 111.7±33.1) and peroxiredoxin (Conoidin A 10nM; Emax: 116.0±7.3) reduces vascular contraction in response to noradrenalin in WKY rats (Emax: 166.6±30.2; p<0.05). These findings suggest an important role for Nox1/4 in redox-dependent organelle dysfunction and post-translational modification of proteins, processes that may play an important role in vascular dysfunction in hypertension.


2011 ◽  
Vol 301 (1) ◽  
pp. F78-F83 ◽  
Author(s):  
Roy L. Sutliff ◽  
Erik R. Walp ◽  
Alexander M. El-Ali ◽  
Stacey Elkhatib ◽  
Koba A. Lomashvili ◽  
...  

The contribution of medial calcification to vascular dysfunction in renal failure is unknown. Vascular function was measured ex vivo in control, noncalcified uremic, and calcified uremic aortas from rats with adenine-induced renal failure. Plasma urea was 16 ± 4, 93 ± 14, and 110 ± 25 mg/dl, and aortic calcium content was 27 ± 4, 29 ± 2, and 4,946 ± 1,616 nmol/mg dry wt, respectively, in the three groups. Maximal contraction by phenylephrine (PE) or KCl was reduced 53 and 63% in uremic aortas, and sensitivity to KCl but not PE was increased. Maximal relaxation to acetylcholine was impaired in uremic aortas (30 vs. 65%), and sensitivity to nitroprusside was also reduced, indicating some impairment of endothelium-independent relaxation as well. None of these parameters differed between calcified and noncalcified uremic aortas. However, aortic compliance was reduced in calcified aortas, ranging from 17 to 61% depending on the severity of calcification. We conclude that uremic vascular calcification, even when not severe, significantly reduces arterial compliance. Vascular smooth muscle and endothelial function are altered in renal failure but are not affected by medial calcification, even when severe.


2019 ◽  
Vol 39 (7) ◽  
pp. 1099-1108 ◽  
Author(s):  
Rachel M Hillabrand ◽  
Uwe G Hacke ◽  
Victor J Lieffers

AbstractInsect defoliation contributes to tree mortality under drought conditions. Defoliation-induced alterations to the vascular transport structure may increase tree vulnerability to drought; however, this has been rarely studied. To evaluate the response of tree vascular function following defoliation, 2-year-old balsam poplar were manually defoliated, and both physiological and anatomical measurements were made after allowing for re-foliation. Hydraulic conductivity measurements showed that defoliated trees had both increased vulnerability to embolism and decreased water transport efficiency, likely due to misshapen xylem vessels. Anatomical measurements revealed novel insights into defoliation-induced alterations to the phloem. Phloem sieve tube diameter was reduced in the stems of defoliated trees, suggesting reduced transport capability. In addition, phloem fibers were absent, or reduced in number, in stems, shoot tips and petioles of new leaves, potentially reducing the stability of the vascular tissue. Results from this study suggest that the defoliation leads to trees with increased risk for vascular dysfunction and drought-induced mortality through alterations in the vascular structure, and highlights a route through which carbon limitation can influence hydraulic dysfunction.


2004 ◽  
Vol 287 (1) ◽  
pp. H40-H45 ◽  
Author(s):  
Sukrutha Veerareddy ◽  
Christy-Lynn M. Cooke ◽  
Philip N. Baker ◽  
Sandra T. Davidge

Oxidative stress mediated by prooxidants has been implicated in the pathogenesis of vascular disorders. However, the effect of prooxidants on myogenic regulation of vascular function and the differential influence of gender is not known. SOD, an intracellular enzyme, restricts excess prooxidant levels and may limit vascular dysfunction. We therefore tested the effects of Cu,Zn SOD deficiency on vascular tone in both male and female SOD knockout (SOD−/−) mice. We hypothesized that myogenic tone would be enhanced in SOD−/− mice by excess prooxidants compared with wild-type control mice. Indeed, resistance-sized mesenteric arteries from SOD−/− mice exhibited enhanced myogenic tone compared with control mice. Myogenic tone was lower in female than male control mice. Interestingly, this gender effect was absent in SOD−/− mice, such that myogenic tone of mesenteric arteries from females was equated to that of arteries from males. Furthermore, the pathways that modulate myogenic tone were diverse. In both male and female control mice, inhibition of prostaglandin H synthase (PGHS) and nitric oxide synthase (NOS) pathways enhanced myogenic tone. In female SOD−/− mice, inhibition of PGHS and NOS pathways enhanced myogenic tone to a greater extent compared with control mice. Conversely, in male SOD−/− mice, NOS and PGHS inhibition did not alter tone and only inhibition of gap junctions enhanced myogenic tone. In conclusion, this study revealed enhanced myogenic tone in SOD−/− mice compared with control mice. Furthermore, Cu,Zn SOD deficiency particularly enhanced myogenic tone in female mice such that their vascular tone attained the level of male SOD−/− mice, possibly mediated by prooxidants.


2012 ◽  
Vol 302 (12) ◽  
pp. R1426-R1435 ◽  
Author(s):  
Lisa Nguy ◽  
Holger Nilsson ◽  
Jaana Lundgren ◽  
Maria E. Johansson ◽  
Tom Teerlink ◽  
...  

The aim of the present study was to characterize the function of resistance arteries, and the aorta, in rats with adenine-induced chronic renal failure (A-CRF). Sprague-Dawley rats were randomized to chow with or without adenine supplementation. After 6–10 wk, mesenteric arteries and thoracic aortas were analyzed ex vivo by wire myography. Plasma creatinine concentrations were elevated twofold at 2 wk, and eight-fold at the time of death in A-CRF animals. Ambulatory systolic and diastolic blood pressures measured by radiotelemetry were significantly elevated in A-CRF animals from week 3 and onward. At death, A-CRF animals had anemia, hyperphosphatemia, hyperparathyroidism, and elevated plasma levels of asymmetric dimethylarginine and oxidative stress markers. There were no significant differences between groups in the sensitivity, or maximal response, to ACh, sodium nitroprusside (SNP), norepinephrine, or phenylephrine in either mesenteric arteries or aortas. However, in A-CRF animals, the rate of aortic relaxation was significantly reduced following washout of KCl (both in intact and endothelium-denuded aorta) and in response to ACh and SNP. Also the rate of contraction in response to KCl was significantly reduced in A-CRF animals both in mesenteric arteries and aortas. The media of A-CRF aortas was thickened and showed focal areas of fragmented elastic lamellae and disorganized smooth muscle cells. No vascular calcifications could be detected. These results indicate that severe renal failure for a duration of less than 10 wk in this model primarily affects the aorta and mainly slows the rate of relaxation.


2014 ◽  
Vol 307 (4) ◽  
pp. H563-H573 ◽  
Author(s):  
John J. Reho ◽  
Xiaoxu Zheng ◽  
James E. Benjamin ◽  
Steven A. Fisher

There is evidence for developmental origins of vascular dysfunction yet little understanding of maturation of vascular smooth muscle (VSM) of regional circulations. We measured maturational changes in expression of myosin phosphatase (MP) and the broader VSM gene program in relation to mesenteric small resistance artery (SRA) function. We then tested the role of the sympathetic nervous system (SNS) in programming of SRAs and used genetically engineered mice to define the role of MP isoforms in the functional maturation of the mesenteric circulation. Maturation of rat mesenteric SRAs as measured by qPCR and immunoblotting begins after the second postnatal week and is not complete until maturity. It is characterized by induction of markers of VSM differentiation (smMHC, γ-, α-actin), CPI-17, an inhibitory subunit of MP and a key target of α-adrenergic vasoconstriction, α1-adrenergic, purinergic X1, and neuropeptide Y1 receptors of sympathetic signaling. Functional correlates include maturational increases in α-adrenergic-mediated force and calcium sensitization of force production (MP inhibition) measured in first-order mesenteric arteries ex vivo. The MP regulatory subunit Mypt1 E24+/LZ- isoform is specifically upregulated in SRAs during maturation. Conditional deletion of mouse Mypt1 E24 demonstrates that splicing of E24 causes the maturational reduction in sensitivity to cGMP-mediated vasorelaxation (MP activation). Neonatal chemical sympathectomy (6-hydroxydopamine) suppresses maturation of SRAs with minimal effect on a conduit artery. Mechanical denervation of the mature rat renal artery causes a reversion to the immature gene program. We conclude that the SNS captures control of the mesenteric circulation by programming maturation of the SRA smooth muscle.


2020 ◽  
Vol 318 (5) ◽  
pp. H1041-H1048
Author(s):  
Lauren A. Biwer ◽  
Henry R. Askew-Page ◽  
Kwangseok Hong ◽  
Jenna Milstein ◽  
Scott R. Johnstone ◽  
...  

Discrete calcium signals within the vascular endothelium decrease with age and contribute to impaired endothelial-dependent vasodilation. Calreticulin (Calr), a multifunctional calcium binding protein and endoplasmic reticulum (ER) chaperone, can mediate calcium signals and vascular function within the endothelial cells (ECs) of small resistance arteries. We found Calr protein expression significantly decreases with age in mesenteric arteries and examined the functional role of EC Calr in vasodilation and calcium mobilization in the context of aging. Third-order mesenteric arteries from mice with or without EC Calr knockdown were examined for calcium signals and constriction to phenylephrine (PE) or vasodilation to carbachol (CCh) after 75 wk of age. PE constriction in aged mice with or without EC Calr was unchanged. However, calcium signals and vasodilation to endothelial-dependent agonist carbachol were significantly impaired in aged EC Calr knockdown mice. Ex vivo incubation of arteries with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) significantly improved vasodilation in mice lacking EC Calr. Our data suggests diminished vascular Calr expression with age can contribute to the detrimental effects of aging on endothelial calcium regulation and vasodilation. NEW & NOTEWORTHY Calreticulin (Calr) is responsible for key physiological processes in endoplasmic reticulum, especially in aging tissue. In particular, endothelial Calr is crucial to vascular function. In this study, we deleted Calr from the endothelium and aged the mice up to 75 wk to examine changes in vascular function. We found two key differences: 1) calcium events in endothelium were severely diminished after muscarinic stimulation, which 2) corresponded with a dramatic decrease in muscarinic vasodilation. Remarkably, we were able to rescue the effect of Calr deletion on endothelial-dependent vasodilatory function using tauroursodeoxycholic acid (TUDCA), an inhibitor of endoplasmic reticulum stress that is currently in clinical trials.


Sign in / Sign up

Export Citation Format

Share Document