Navigation System for the Blind: Auditory Display Modes and Guidance

1998 ◽  
Vol 7 (2) ◽  
pp. 193-203 ◽  
Author(s):  
Jack M. Loomis ◽  
Reginald G. Golledge ◽  
Roberta L. Klatzky

The research we are reporting here is part of our effort to develop a navigation system for the blind. Our long-term goal is to create a portable, self-contained system that will allow visually impaired individuals to travel through familiar and unfamiliar environments without the assistance of guides. The system, as it exists now, consists of the following functional components: (1) a module for determining the traveler's position and orientation in space, (2) a Geographic Information System comprising a detailed database of our test site and software for route planning and for obtaining information from the database, and (3) the user interface. The experiment reported here is concerned with one function of the navigation system: guiding the traveler along a predefined route. We evaluate guidance performance as a function of four different display modes: one involving spatialized sound from a virtual acoustic display, and three involving verbal commands issued by a synthetic speech display. The virtual display mode fared best in terms of both guidance performance and user preferences.

2014 ◽  
Vol 1665 ◽  
pp. 85-91 ◽  
Author(s):  
Josep M. Soler ◽  
Jiri Landa ◽  
Vaclava Havlova ◽  
Yukio Tachi ◽  
Takanori Ebina ◽  
...  

ABSTRACTMatrix diffusion is a key process for radionuclide retention in crystalline rocks. Within the LTD project (Long-Term Diffusion), an in-situ diffusion experiment in unaltered non-fractured granite was performed at the Grimsel Test Site (www.grimsel.com, Switzerland). The tracers included 3H as HTO, 22Na+, 134Cs+ and 131I- with stable I- as carrier.The dataset (except for 131I- because of complete decay) was analyzed with different diffusion-sorption models by different teams (NAGRA / IDAEA-CSIC, UJV-Rez, JAEA, Univ. Poitiers) using different codes, with the goal of obtaining effective diffusion coefficients (De) and porosity (ϕ) or rock capacity (α) values. A Borehole Disturbed Zone (BDZ), which was observed in the rock profile data for 22Na+ and 134Cs+, had to be taken into account to fit the experimental observations. The extension of the BDZ (1-2 mm) was about the same magnitude as the mean grain size of the quartz and feldspar grains.De and α values for the different tracers in the BDZ are larger than the respective values in the bulk rock. Capacity factors in the bulk rock are largest for Cs+ (strong sorption) and smallest for 3H (no sorption). However, 3H seems to display large α values in the BDZ. This phenomenon will be investigated in more detail in a second test starting in 2013.


2017 ◽  
Vol 8 (2) ◽  
pp. 870-875
Author(s):  
M. J. Zhang ◽  
R. R. Zhang ◽  
G. Xu ◽  
L. P. Chen

Problems in the process of manned agricultural aerial spraying, such as heavy workload in route planning, overlaps or omissions in spraying seriously reduce the efficiency of spraying and utilization rate of pesticides. This paper presents the design and development of a navigation system for manned agricultural aerial spraying based on an industrial tablet PC. This system provides three key functions: route planning, spraying navigation and real-time evaluation of spraying quality. The test and application results show that this system has high efficiency in route planning, and the average coverage rate of spraying could reach as high as 96%. Its application effect is remarkable, and as a result, this system can meet the demand of manned agricultural aerial spraying in route planning and navigation.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 222 ◽  
Author(s):  
Lin Zhang ◽  
Wei Gao ◽  
Qian Li ◽  
Runbing Li ◽  
Zhanwei Yao ◽  
...  

The implementation principle of a typical three-pulse cold atom interference gyroscope is introduced in this paper. Based on its configuration and current research status, the problems of cold atom interference gyro are pointed out. The data-rate is insufficient, and it is difficult to achieve high dynamic measurement. Then, based on these two limitations, a novel design of the monitoring navigation system of the cold atom interference gyroscope (CAIG) and an intermediate-grade inertial measurement unit (IMU) was proposed to obtain the long-term position result without GPS signals, such as the Inertial Navigation System (INS) in underwater vehicles. While the CAIG was used as the external gyro, the bias of IMU and the misalignment angle between the CAIG-frame and the IMU-frame are obtained through filtering technique. The simulation test and field test demonstrated the improvements of the long-term positioning accuracy of the INS.


2003 ◽  
Vol 119 (10,11) ◽  
pp. 625-634 ◽  
Author(s):  
Norio TENMA ◽  
Tsutomu YAMAGUCHI ◽  
Tsuneo KIKUCHI ◽  
Kazuhiko TEZUKA ◽  
George ZYVOLOSKI
Keyword(s):  

2019 ◽  
Vol 11 (4) ◽  
pp. 139-154
Author(s):  
M. RAJA ◽  
Gaurav ASTHANA ◽  
Ajay SINGH ◽  
Ashna SINGHAL ◽  
Pallavi LAKRA

Navigation has a huge application in aviation and aircraft automatic approach. Two widely used navigation systems are Global position System (GPS) and Inertial Navigation System (INS). Triangulation method used to determine the aircrafts location by GPS, speed whereas an INS, with the aid of gyroscope and accelerometer, estimates the location, velocity and alignment of an aircraft. Aircraft navigation is a complex task and using only one of the above navigation systems results in inaccurate and insufficient data. GPS stops working when satellite signal is not received, susceptible to interfere occasionally has high noise content, and has a low bandwidth, INS system requires external information for initialization has long-term drift errors. Certain errors like ionosphere interference, clock error, orbital error, position error, etc. might arise and disrupt the navigation process. In order to outrun the limitations of the above two systems and counter the errors, both INS and GPS can be integrated and used to attain more smooth, accurate and faster aircraft attitude estimates, as they have complementary strengths and limitations. GPS is stable for a long period and can act as an independent navigation system whereas INS is not susceptible to interference and signal losses has high radio bandwidth and works well for short intervals of time. In order to get accurate and precise attitude estimation, calculation of the parameters at different altitude using both systems is done; furthermore the comparison and contrast between the results is performed, measured quantities are transformed between various frames like longitudinal to rolling, calculation and elimination of errors is done producing the final solution. Because of integrated GPS and INS, the navigation system exhibits robustness, higher bandwidth, better noise characteristics, and long-term stability.


2009 ◽  
Vol 1193 ◽  
Author(s):  
Andrew James Martin ◽  
Ingo Blechschmidt

AbstractTwo recent ongoing major projects at the Grimsel Test Site (GTS) (www.grimsel.com) that were initiated to simulate the long-term behaviour of radionuclides in the repository near-field and the surrounding host rock are presented: the Colloid Formation and Migration (CFM) project, which focuses on colloid generation and migration from a bentonite source doped with radionuclides and the Long-Term Diffusion (LTD) project, which aims at in-situ verification and understanding of the processes that control the long-term diffusion of repository-relevant radionuclides. So far, the CFM project has principally involved: development and implementation of a state-of-the-art sealing concept to control hydraulic gradients in a shear zone to imitate repository-relevant conditions; extensive laboratory studies to examine bentonite erosion and colloid formation in a shear zone; and, development of models to estimate colloid formation and migration. The next stage will be to assess the behavior of bentonite colloids generated from a radionuclide spiked bentonite source-term emplaced into the controlled flow field of the shear zone. This will be coupled with further extensive laboratory studies in order to refine and evaluate the colloid models currently used in performance assessments. The LTD project consists of: a monopole diffusion experiment where weakly sorbing and non-sorbing radionuclides (3H, 22Na, 131I, 134Cs) have been circulating and diffusing into undisturbed rock matrix since June 2007; experiments to characterise pore space geometry, including determination of in-situ porosity with 14C doped MMA resin for comparison with laboratory derived data; a study of natural tracers to elucidate evidence of long-term diffusion processes; and, an investigation of the in-situ matrix diffusion paths in core material from earlier GTS experiments. Future experiments will focus on diffusion processes starting from a water-conducting feature under realistic boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document