scholarly journals Neuromodulation Special Issue Effects of HF-rTMS over the left and right DLPFC on proactive and reactive cognitive control

Author(s):  
Matias M Pulopulos ◽  
Jens Allaert ◽  
Marie-Anne Vanderhasselt ◽  
Alvaro Sanchez-Lopez ◽  
Sara De Witte ◽  
...  

Abstract Previous research supports the distinction between proactive and reactive control. Although the dorsolateral prefrontal cortex (DLPFC) has been consistently related to these processes, lateralization of proactive and reactive control is still under debate. We manipulated brain activity to investigate the role of the left and right DLPFC in proactive and reactive cognitive control. Using a single-blind, sham-controlled crossover within-subjects design, 25 young healthy females performed the ‘AX’ Continuous Performance Task after receiving sham vs active high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) to increase left and right DLPFC activity. Reaction times (RTs) and pupillometry were used to assess patterns of proactive and reactive cognitive control and task-related resource allocation, respectively. We observed that, compared to sham, HF-rTMS over the left DLPFC increased proactive control. After right DLPFC HF-rTMS, participants showed slower RTs on AX trials, suggesting more reactive control. However, this latter result was not supported by RTs on BX trials (i.e. the trial that specifically assess reactive control). Pupil measures showed a sustained increase in resource allocation after both active left and right HF-rTMS. Our results with RT data provide evidence on the role of the left DLPFC in proactive control and suggest that the right DLPFC is implicated in reactive control.

2019 ◽  
Author(s):  
Sonya V. Troller-Renfree ◽  
George Buzzell ◽  
Nathan A. Fox

Cognitive control develops rapidly over the first decade of life, with one of the dominant changes being a transition from reliance on “as-needed” control (reactive control) to a more planful, sustained form of control (proactive control). While the emergence of proactive control is important for adaptive, mature behavior, we know little about how this transition takes place, the neural correlates of this transition, and whether development of executive functions are a precondition for developing the ability to adopt a proactive control strategy. The present study addresses these questions, focusing on the transition from reactive to proactive control in a cross-sectional sample of 79 children – forty-one 5-year-olds and thirty-eight 9-year-olds. Children completed an adapted version of the AX-Continuous Performance Task while electroencephalography was recorded and a standardized executive function battery was administered. Results revealed 5-year-olds predominantly employed reactive strategies, while 9-year-olds used proactive strategies. Critically, use of proactive control was predicted by working memory ability, above and beyond other executive functions. Moreover, when enacting proactive control, greater increases in neural activity underlying working memory updating were observed; links between working memory ability and proactive control strategy use were mediated by such neural activity. Collectively, the results provide convergent evidence that the developmental transition from reactive to proactive control is dependent on neurocognitive development of specific executive functioning skills. Developments in working memory appear to be a precondition for adopting the more mature, and adaptive, proactive control strategy.


2019 ◽  
Author(s):  
Sonya V. Troller-Renfree ◽  
George Buzzell ◽  
Daniel Pine ◽  
Heather Henderson ◽  
Nathan A. Fox

Objective: Children with the temperament of Behavioral Inhibition (BI) face increased risk for developing an anxiety disorder later in life. However, not all children with BI manifest anxiety symptoms, and cognitive-control-strategy use may moderate the pathway between BI and anxiety. Individuals vary widely in the strategy used to instantiate control; the present study examined whether a more planful style of cognitive control (i.e. proactive control) or a more impulsive strategy of control (i.e. reactive control) moderates the association between early BI and later anxiety symptoms.Method: Participants were part of a longitudinal study examining the relations between BI (measured at 2-3 years) and later anxiety symptoms (measured at 13 years). Cognitive control strategy use was assessed at age 13 using the AX variant of the Continuous Performance Task (AX-CPT).Results: BI in toddlerhood significantly predicted increased use of a more reactive cognitive control style in adolescence. Additionally, cognitive control strategy moderated the relation between BI and anxious symptoms, such that reliance on a more reactive strategy predicted higher levels of anxiety for children high in BI.Conclusion: The present study is the first to identify the specific control strategy that increases risk for anxiety. Thus, is it not cognitive control per se, but the specific control strategy children adopt that may increase risk for anxiety later in life. These findings have important implications for future evidence-based interventions given that they suggest an emphasis reducing reactive cognitive control and increasing proactive cognitive control may reduce anxious cognition.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chunjie Wang ◽  
Baoming Li ◽  
Yuan Yao

Based on the dual mechanisms of control (DMC) theory, there are two distinct mechanisms of cognitive control, proactive and reactive control. Importantly, accumulating evidence indicates that there is a developmental shift from predominantly using reactive control to proactive control during childhood, and the engagement of proactive control emerges as early as 5–7 years old. However, less is known about whether and how proactive control at this early age stage is associated with children’s other cognitive abilities such as working memory and math ability. To address this issue, the current study recruited 98 Chinese children under 5–7 years old. Among them, a total of 81 children (mean age = 6.29 years) contributed useable data for the assessments of cognitive control, working memory, and math ability. The results revealed that children at this age period predominantly employed a pattern of proactive control during an AX-Continuous Performance Task (AX-CPT). Moreover, the proactive control index estimated by this task was positively associated with both working memory and math performance. Further regression analysis showed that proactive control accounted for significant additional variance in predicting math performance after controlling for working memory. Most interestingly, mediation analysis showed that proactive control significantly mediated the association between working memory and math performance. This suggests that as working memory increases so does proactive control, which may in turn improve math ability in early childhood. Our findings may have important implications for educational practice.


2019 ◽  
Author(s):  
Eduard Ort ◽  
Johannes J. Fahrenfort ◽  
Reshanne Reeder ◽  
Stefan Pollmann ◽  
Christian N. L. Olivers

AbstractCognitive control can involve proactive (preparatory) and reactive (corrective) mechanisms. Using a gaze-contingent eye tracking paradigm combined with fMRI, we investigated the involvement of these different modes of control and their underlying neural networks, when switching between different targets in multiple-target search. Participants simultaneously searched for two possible targets presented among distractors, and selected one of them. In one condition, only one of the targets was available in each display, so that the choice was imposed, and reactive control would be required. In the other condition, both targets were present, giving observers free choice over target selection, and allowing for proactive control. Switch costs emerged only when targets were imposed and not when target selection was free. We found differential levels of activity in the frontoparietal control network depending on whether target switches were free or imposed. Furthermore, we observed core regions of the default mode network to be active during target repetitions, indicating reduced control on these trials. Free and imposed switches jointly activated parietal and posterior frontal cortices, while free switches additionally activated anterior frontal cortices. These findings highlight unique contributions of proactive and reactive control during visual search.


2007 ◽  
Vol 19 (12) ◽  
pp. 1923-1931 ◽  
Author(s):  
Alexander Strobel ◽  
Gesine Dreisbach ◽  
Johannes Müller ◽  
Thomas Goschke ◽  
Burkhard Brocke ◽  
...  

Although it is widely accepted that serotonin plays a pivotal role in the modulation of anxiety- and depression-related personality traits as well as in the pathogenesis of anxiety disorders and depression, the role of serotonin in cognition is less clear. In the present study, we investigated the involvement of serotonin in cognitive behaviors by examining the impact of genetic variation in key regulators of serotonergic neurotransmission on behavioral measures in a cognitive control task. Eighty-five healthy participants performed a cued continuous performance task (the AX Continuous Performance Task [AXCPT]) and were genotyped for polymorphisms in the transcriptional control regions of the tryptophan hydroxylase 2 gene (TPH2 G-703T; rs4570625) and the serotonin transporter gene (5-HTTLPR). The core result was that individuals lacking the rare TPH2 T allele were not faster than T allele carriers, but committed fewer errors and were less variable in responding. These findings parallel those of a recent study where an enhancement of executive control in individuals without the rare TPH2 T/T genotype was observed. Together with recent evidence that individuals without the T allele exhibit higher scores in anxiety- and depression-related personality traits, our results underscore the role of the TPH2 G-703T polymorphism in the modulation of behavior and raise the intriguing possibility that genetic variants associated with higher negative emotionality may have beneficial effects on some cognitive functions.


Author(s):  
F. Lieder ◽  
G. Iwama

AbstractBeyond merely reacting to their environment and impulses, people have the remarkable capacity to proactively set and pursue their own goals. The extent to which they leverage this capacity varies widely across people and situations. The goal of this article is to propose and evaluate a model of proactivity and reactivity. We proceed in three steps. First, we model proactivity in a widely used cognitive control task known as the AX Continuous Performance Task (AX-CPT). Our theory formalizes an important aspect of proactivity as meta-control over proactive and reactive control. Second, we perform a quantitative model comparison to identify the number and nature of meta-control decisions that are involved in the regulation of proactive behavior. Our findings suggest that individual differences in proactivity are governed by two independent meta-control decisions, namely deciding whether to set an intention for what to do in a future situation and deciding whether to recall one’s intentions when the situation occurs. Third, we test the assumptions and qualitative predictions of the winning model against data from numerous experiments varying the incentives, cognitive load, and statistical structure of the task. Our results suggest that proactivity can be understood in terms of computational models of meta-control. Future work will extend our models from proactive control in the AX-CPT to proactive goal creation and goal pursuit in the real world.


2021 ◽  
Author(s):  
◽  
Laura Kranz

<p>According to the Dual Mechanisms of Control (DMC) framework (Braver, 2012) distraction can be controlled either proactively (i.e., before the onset of a distractor) or reactively (i.e., after the onset of a distractor). Research clearly indicates that, when distractors are emotionally neutral, proactive mechanisms are more effective at controlling distraction than reactive mechanisms. However, whether proactive control mechanisms can control irrelevant emotional distractions as effectively as neutral distraction is not known. In the current thesis I examined cognitive control over emotional distraction. In Experiment 1, I tested whether proactive mechanisms can control emotional distraction as effectively as neutral distraction. Participants completed a distraction task. On each trial, they determined whether a centrally presented target letter (embedded amongst a circle of ‘o’s) was an ‘X’ or an ‘N’, while ignoring peripheral distractors (negative, neutral, or positive images). Distractors were presented on either a low proportion (25%) or a high proportion (75%) of trials, to evoke reactive and proactive cognitive control strategies, respectively. Emotional images (both positive and negative) produced more distraction than neutral images in the low distractor frequency (i.e., reactive control) condition. Critically, emotional distraction was almost abolished in the high distractor frequency condition; emotional images were only slightly more distracting than neutral images, suggesting that proactive mechanisms can control emotional distraction almost as effectively as neutral distraction. In Experiment 2, I replicated and extended Experiment 1. ERPs were recorded while participants completed the distraction task. An early index (the early posterior negativity; EPN) and a late index (the late positive potential; LPP) of emotional processing were examined to investigate the mechanisms by which proactive control minimises emotional distraction. The behavioural results of Experiment 2 replicated Experiment 1, providing further support for the hypothesis that proactive mechanisms can control emotional distractions as effectively as neutral distractions. While proactive control was found to eliminate early emotional processing of positive distractors, it paradoxically did not attenuate late emotional processing of positive distractors. On the other hand, proactive control eliminated late emotional processing of negative distractors. However, the early index of emotional processing was not a reliable index of negative distractor processing under either reactive or proactive conditions. Taken together, my findings show that proactive mechanisms can effectively control emotional distraction, but do not clearly establish the mechanisms by which this occurs.</p>


2019 ◽  
Vol 84 (8) ◽  
pp. 2090-2110
Author(s):  
Gizem Arabacı ◽  
Benjamin A. Parris

Abstract Inattention is a symptom of many clinical disorders including attention deficit hyperactivity disorder (ADHD) and is thought to be primarily related to limitations in working memory. In two studies, we investigated the implications of inattention for task switching performance. In study one, we measured task switching performance using predictable and unpredictable conditions in adults who self-rated inattention and other ADHD-related tendencies. Tasks required proactive control and reactive control, respectively, under both high and low working memory loads. Results revealed that inattentive, but not hyperactive/impulsive traits, predicted switch costs when switching was predictable and working memory load was high. None of the ADHD traits were related to unpredictable switch costs. Study two was designed to: (1) de-confound the role of proactive control and the need to keep track of task order in the predictable task switching paradigm; (2) investigate whether goal neglect, an impairment related to working memory, could explain the relationship between inattention and predictable task switching. Results revealed that neither predictability nor the need to keep track of the task order led to the association between switch costs and inattention, but instead it was the tendency for those high in inattention to neglect preparatory proactive control, especially when reactive control options were available.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S89-S89
Author(s):  
Anita Kwashie ◽  
Yizhou Ma ◽  
Andrew Poppe ◽  
Deanna Barch ◽  
Cameron Carter ◽  
...  

Abstract Background Cognitive control mechanisms enable an individual to regulate, coordinate, and sequence thoughts and actions to obtain desired outcomes. A theory of control specialization posits that proactive control is necessary for anticipatory planning and goal maintenance and recruits sustained lateral prefrontal activity, whereas reactive control, essential for adapting to transient changes, marshals a more extensive brain network (Braver, 2012). Increased task errors and reduced frontoparietal activity in proactive contexts is observed in severe psychopathology, including schizophrenia (Poppe et al., 2016), leading to the prediction that patients rely on reactive control more when performing such tasks. However, evidence of primate prefrontal ‘switch’ neurons, active during both proactive and reactive contexts, challenges the notion that cognitive control relies on discrete processing networks (Blackman et al., 2016). To examine this contradiction, we sought to characterize the distinctiveness between proactive and reactive control in healthy and patient populations using the Dot Pattern Expectancy Task (DPX). We also examined if a bias toward proactive or reactive control predicted behavioral metrics. Methods 44 individuals with schizophrenia (SZ) and 50 matched healthy controls (HC) completed 4 blocks of the DPX during a 3-Tesla fMRI scan (Poppe et al., 2016). Participants followed the ‘A-then-X’ rule, in which they pressed one button whenever an A cue followed an X probe, and pressed a different button for any other non-target stimulus sequence. We examined bilateral frontoparietal ROIs from the literature for evidence of cognitive control specialization as well as whole-brain analyses. Subsequent nonparametric tests and measures of neural response variation strengthened our interpretations. Participant d’-context (dependent on task accuracy) measured their tendency to engage in proactive control. Results Behavioral data revealed that HC participants showed a greater proclivity for proactive control than did their SZ counterparts. HC reaction time outpaced SZ reaction time in trials requiring successful marshalling of proactive control. Preliminary neuroimaging analyses suggest marginal between-group differences in control specialization. HC specialization appeared to be most apparent in diffuse frontal lateral regions, and bilateral posterior parietal cortex. Within the SZ group, specialization was most evident in bilateral posterior parietal cortex. Between-group control specialization differences were most apparent in right hemisphere frontal regions. Superior frontal gyrus and medial temporal lobe activity during proactive processes accounted for modest variance in d’-context. Discussion There were significant between-group differences in goal maintenance behavioral metrics such as reaction time and a tendency to engage in proactive control. Control specialization occurred more diffusely in controls compared to patient counterparts. However, activity in these regions had minimal ability to predict behavioral metrics. Overall, the relatively small size of control-specific areas compared to regions involved in dual processing offers support for the malleable nature of regions implicated in human cognitive control.


Sign in / Sign up

Export Citation Format

Share Document