scholarly journals Dynamic Threat Processing

2019 ◽  
Vol 31 (4) ◽  
pp. 522-542 ◽  
Author(s):  
Christian Meyer ◽  
Srikanth Padmala ◽  
Luiz Pessoa

During real-life situations, multiple factors interact dynamically to determine threat level. In the current fMRI study involving healthy adult human volunteers, we investigated interactions between proximity, direction (approach vs. retreat), and speed during a dynamic threat-of-shock paradigm. As a measure of threat-evoked physiological arousal, skin conductance responses were recorded during fMRI scanning. Some brain regions tracked individual threat-related factors, and others were also sensitive to combinations of these variables. In particular, signals in the anterior insula tracked the interaction between proximity and direction where approach versus retreat responses were stronger when threat was closer compared with farther. A parallel proximity-by-direction interaction was also observed in physiological skin conductance responses. In the right amygdala, we observed a proximity by direction interaction, but intriguingly in the opposite direction as the anterior insula; retreat versus approach responses were stronger when threat was closer compared with farther. In the right bed nucleus of the stria terminalis, we observed an effect of threat proximity, whereas in the right periaqueductal gray/midbrain we observed an effect of threat direction and a proximity by direction by speed interaction (the latter was detected in exploratory analyses but not in a voxelwise fashion). Together, our study refines our understanding of the brain mechanisms involved during aversive anticipation in the human brain. Importantly, it emphasizes that threat processing should be understood in a manner that is both context-sensitive and dynamic.

2017 ◽  
Author(s):  
Christian Meyer ◽  
Srikanth Padmala ◽  
Luiz Pessoa

AbstractDuring real-life situations, multiple factors interact dynamically to determine threat level. In the current functional MRI study involving healthy adult human volunteers, we investigated interactions between proximity, direction (approach vs. retreat), and speed during a dynamic threat-of-shock paradigm. As a measure of threat-evoked physiological arousal, skin conductance responses were recorded during fMRI scanning. Whereas some brain regions tracked individual threat-related factors, others were also sensitive to combinations of these variables. In particular, signals in the anterior insula tracked the interaction between proximity and direction where approach vs. retreat responses were stronger when threat was closer compared to farther. A parallel proximity-by-direction interaction was also observed in physiological skin conductance responses. In the right amygdala, we observed a proximity by direction interaction, but intriguingly in the opposite direction as the anterior insula; retreat vs. approach responses were stronger when threat was closer compared to farther. In the right bed nucleus of the stria terminalis, we observed an effect of threat proximity, whereas in the right periaqueductal gray/midbrain we observed an effect of threat direction and a proximity by direction by speed interaction (the latter was detected in exploratory analyses but not in a voxelwise fashion). Together, our study refines our understanding of the brain mechanisms involved during aversive anticipation in the human brain. Importantly, it emphasizes that threat processing should be understood in a manner that is both context sensitive and dynamic.


2021 ◽  
pp. 1-22
Author(s):  
Dinavahi V. P. S. Murty ◽  
Songtao Song ◽  
Kelly Morrow ◽  
Jongwan Kim ◽  
Kesong Hu ◽  
...  

Abstract In the present fMRI study, we examined how anxious apprehension is processed in the human brain. A central goal of the study was to test the prediction that a subset of brain regions would exhibit sustained response profiles during threat periods, including the anterior insula, a region implicated in anxiety disorders. A second important goal was to evaluate the responses in the amygdala and the bed nucleus of the stria terminals, regions that have been suggested to be involved in more transient and sustained threat, respectively. A total of 109 participants performed an experiment in which they encountered “threat” or “safe” trials lasting approximately 16 sec. During the former, they experienced zero to three highly unpleasant electrical stimulations, whereas in the latter, they experienced zero to three benign electrical stimulations (not perceived as unpleasant). The timing of the stimulation during trials was randomized, and as some trials contained no stimulation, stimulation delivery was uncertain. We contrasted responses during threat and safe trials that did not contain electrical stimulation, but only the potential that unpleasant (threat) or benign (safe) stimulation could occur. We employed Bayesian multilevel analysis to contrast responses to threat and safe trials in 85 brain regions implicated in threat processing. Our results revealed that the effect of anxious apprehension is distributed across the brain and that the temporal evolution of the responses is quite varied, including more transient and more sustained profiles, as well as signal increases and decreases with threat.


2009 ◽  
Vol 101 (4) ◽  
pp. 1749-1754 ◽  
Author(s):  
Christopher M. Laine ◽  
Kevin M. Spitler ◽  
Clayton P. Mosher ◽  
Katalin M. Gothard

The amygdala plays a crucial role in evaluating the emotional significance of stimuli and in transforming the results of this evaluation into appropriate autonomic responses. Lesion and stimulation studies suggest involvement of the amygdala in the generation of the skin conductance response (SCR), which is an indirect measure of autonomic activity that has been associated with both emotion and attention. It is unclear if this involvement marks an emotional reaction to an external stimulus or sympathetic arousal regardless of its origin. We recorded skin conductance in parallel with single-unit activity from the right amygdala of two rhesus monkeys during a rewarded image viewing task and while the monkeys sat alone in a dimly lit room, drifting in and out of sleep. In both experimental conditions, we found similar SCR-related modulation of activity at the single-unit and neural population level. This suggests that the amygdala contributes to the production or modulation of SCRs regardless of the source of sympathetic arousal.


2000 ◽  
Vol 12 (4) ◽  
pp. 181-190 ◽  
Author(s):  
Hans J. Markowitsch ◽  
Alexander Thiel ◽  
Mechthild Reinkemeier ◽  
Josef Kessler ◽  
Adem Koyuncu ◽  
...  

What distinguishes the recall of real-life experiences from that of self-created, fictitious emotionally laden information? Both kinds of information belong to the episodic memory system. Autobiographic memories constitute that part of the episodic memory system that is composed of significant life episodes, primarily of the distant past. Functional imaging was used to study the neural networks engaged in retrieving autobiographic and fictitious information of closely similar content. The principally activated brain regions overlapped considerably and constituted temporal and inferior prefrontal regions plus the cerebellum. Selective activations of the right amygdala and the right ventral prefrontal cortex (at the level of the uncinate fascicle interconnnecting prefrontal and temporopolar areas) were found when subtracting fictitious from autobiographic retrieval. Furthermore, distinct foci in the left temporal lobe were engaged. These data demonstrate that autobiographic memory retrieval uses (at least in non-brain damaged individuals) a network of right hemispheric ventral prefrontal and temporopolar regions and left hemispheric lateral temporal regions. It is concluded that it is the experiential character, its special emotional infiltration and its arousal which distinguishes memory of real-life from that of fictitious episodes. Consequently, our results point to the engagement of a bi-hemispheric network in which the right temporo-prefrontal hemisphere is likely to be responsible for the affective/arousal side of information retrieval and the left-hemispheric temporal gyrus for its engram-like representation. Portions of the neural activation found during retrieval might, however, reflect re-encoding processes as well.


2010 ◽  
Vol 103 (6) ◽  
pp. 3115-3122 ◽  
Author(s):  
Yiwen Li Hegner ◽  
Ying Lee ◽  
Wolfgang Grodd ◽  
Christoph Braun

We investigated to which extent the discrimination of tactile patterns and vibrotactile frequencies share common cortical areas. An adaptation paradigm has been used to identify cortical areas specific for processing particular features of tactile stimuli. Healthy right-handed subjects performed a delayed-match-to-sample (DMTS) task discriminating between pairs of tactile patterns or vibrotactile frequencies in separate functional MRI sessions. The tactile stimuli were presented to the right middle fingertip sequentially with a 5.5 s delay. Regions of interest (ROIs) were defined by cortical areas commonly activated in both tasks and those that showed differential activation between both tasks. Results showed recruitment of many common brain regions along the sensory motor pathway (such as bilateral somatosensory, premotor areas, and anterior insula) in both tasks. Three cortical areas, the right intraparietal sulcus (IPS), supramarginal gyrus (SMG)/parietal operculum (PO), and PO, were significantly more activated during the pattern than in the frequency task. Further BOLD time course analysis was performed in the ROIs. Significant BOLD adaptation was found in bilateral IPS, right anterior insula, and SMG/PO in the pattern task, whereas there was no significant BOLD adaptation found in the frequency task. In addition, the right hemisphere was found to be more dominant in the pattern than in the frequency task, which could be attributed to the differences between spatial (pattern) and temporal (frequency) processing. From the different spatio-temporal characteristics of BOLD activation in the pattern and frequency tasks, we concluded that different neuronal mechanisms are underlying the tactile spatial and temporal processing.


2021 ◽  
Vol 11 (5) ◽  
pp. 525
Author(s):  
Corinna Hartling ◽  
Sophie Metz ◽  
Corinna Pehrs ◽  
Milan Scheidegger ◽  
Rebecca Gruzman ◽  
...  

Previous fMRI research has applied a variety of tasks to examine brain activity underlying emotion processing. While task characteristics are known to have a substantial influence on the elicited activations, direct comparisons of tasks that could guide study planning are scarce. We aimed to provide a comparison of four common emotion processing tasks based on the same analysis pipeline to suggest tasks best suited for the study of certain target brain regions. We studied an n-back task using emotional words (EMOBACK) as well as passive viewing tasks of emotional faces (FACES) and emotional scenes (OASIS and IAPS). We compared the activation patterns elicited by these tasks in four regions of interest (the amygdala, anterior insula, dorsolateral prefrontal cortex (dlPFC) and pregenual anterior cingulate cortex (pgACC)) in three samples of healthy adults (N = 45). The EMOBACK task elicited activation in the right dlPFC and bilateral anterior insula and deactivation in the pgACC while the FACES task recruited the bilateral amygdala. The IAPS and OASIS tasks showed similar activation patterns recruiting the bilateral amygdala and anterior insula. We conclude that these tasks can be used to study different regions involved in emotion processing and that the information provided is valuable for future research and the development of fMRI biomarkers.


2014 ◽  
Vol 25 (4) ◽  
pp. 233-238 ◽  
Author(s):  
Martin Peper ◽  
Simone N. Loeffler

Current ambulatory technologies are highly relevant for neuropsychological assessment and treatment as they provide a gateway to real life data. Ambulatory assessment of cognitive complaints, skills and emotional states in natural contexts provides information that has a greater ecological validity than traditional assessment approaches. This issue presents an overview of current technological and methodological innovations, opportunities, problems and limitations of these methods designed for the context-sensitive measurement of cognitive, emotional and behavioral function. The usefulness of selected ambulatory approaches is demonstrated and their relevance for an ecologically valid neuropsychology is highlighted.


2019 ◽  
Author(s):  
Zachary Hawes ◽  
H Moriah Sokolowski ◽  
Chuka Bosah Ononye ◽  
Daniel Ansari

Where and under what conditions do spatial and numerical skills converge and diverge in the brain? To address this question, we conducted a meta-analysis of brain regions associated with basic symbolic number processing, arithmetic, and mental rotation. We used Activation Likelihood Estimation (ALE) to construct quantitative meta-analytic maps synthesizing results from 86 neuroimaging papers (~ 30 studies/cognitive process). All three cognitive processes were found to activate bilateral parietal regions in and around the intraparietal sulcus (IPS); a finding consistent with shared processing accounts. Numerical and arithmetic processing were associated with overlap in the left angular gyrus, whereas mental rotation and arithmetic both showed activity in the middle frontal gyri. These patterns suggest regions of cortex potentially more specialized for symbolic number representation and domain-general mental manipulation, respectively. Additionally, arithmetic was associated with unique activity throughout the fronto-parietal network and mental rotation was associated with unique activity in the right superior parietal lobe. Overall, these results provide new insights into the intersection of numerical and spatial thought in the human brain.


Sign in / Sign up

Export Citation Format

Share Document