Migratory behaviour of captive white-crowned sparrows, Zonotrichia leucophrys gambelii, differs during autumn and spring migration

Behaviour ◽  
2006 ◽  
Vol 143 (10) ◽  
pp. 1219-1240 ◽  
Author(s):  
Marilyn Ramenofsky ◽  
Renée Agatsuma

AbstractGambel's white-crown sparrow (Zonotorichia leucophrys gambelii) is a long-distance, over-land migrant. In captivity birds display many characteristics of the autumn and spring migratory life history stages that include hyperphagia, fattening and high intensity nocturnal activity termed migratory restlessness or Zugunruhe. We recorded the behaviour of captive birds while simultaneously collecting 24 h locomotor activity. These data were used to define the behaviour displayed by captive birds during autumn and spring in order to compare the two migratory stages and to draw inferences for free-living birds. The predominant behaviour during day and nighttime was rest. Feeding occurred only during daylight hours but at a greater frequency in autumn than spring. Birds generally used their feet as the primary source of locomotion during the day termed 'jump'. During the night, two distinct behaviours, 'beak-up flight' and 'beak-up' involving high intensity wing motions were observed and considered components of migratory restlessness. The frequency of the 'beak-up flight' was greatest during spring and associated with the enhanced tempo of vernal migration. In both stages, migratory restlessness was preceded by a quiescent phase, the occurrence of which differed and related to time available for foraging and length of the night. Given these findings, we hypothesize that diel behaviours displayed by autumn and spring migrants in captivity highlight distinctions between the two life history stages.

2013 ◽  
Vol 59 (3) ◽  
pp. 349-359 ◽  
Author(s):  
Gang Wang ◽  
Marilyn Ramenofsky ◽  
John C. Wingfield

Abstract In seasonally breeding birds, the annual cycle of photoperiod is a principal environmental cue for temporal arrangement of different life-history stages, such as migration and breeding. In the past, most research has focused on the mechanisms of photoperiodic control of breeding with less attention paid to migration. In Gambel’s white-crowned sparrow Zonotrichia leucophrys gambelii (GWCS), photoreceptors for induction of breeding are known to reside in the basal hypothalamus. However, it is unknown whether the sites of photoperiodic reception for vernal migration are the same as those for breeding. Therefore, we hypothesized that they may be controlled separately. In this study, we exposed photosensitive GWCSs to low-penetration green light (wavelength at 510 nm) under a regime of 1 lux during the day and <0.1 lux at night, and switched the photoperiodic conditions from short day (10 h daytime) to long day (18 h daytime). The results showed that the experimental birds developed traits associated with vernal migration including mass increase, fat deposition and migratory restlessness behavior when transferred from short day to long day green light cycles, while control birds maintained continuously on short day green light conditions did not express any migration related characteristics. Neither experimental nor control groups showed gonadal recrudescence under either green light cycles. In support of our hypothesis, we were able to apparently dissociate the photoperiodic responses regulating vernal migration and breeding, which suggests separate mechanisms of photoperiodic time measurement. Such distinct photoperiodic mechanisms may drive the fine-tuned temporal arrangement of the two life history stages.


Behaviour ◽  
2011 ◽  
Vol 148 (8) ◽  
pp. 859-876 ◽  
Author(s):  
John C. Wingfield ◽  
Alexander J. Coverdill ◽  
Aaron D. Clark ◽  
Marilyn Ramenofsky

AbstractObservations of nocturnal activity in resident species held in captivity are often attributed to migratory restlessness (MR). Previous publications investigating migratory white-crowned sparrows (Zonotrichia leucophrys gambelii) provided a distinct set of traits characteristic of MR, which we used to test the expression of activity and behaviour in the resident subspecies (Z. l. nuttalli). Under a winter photocycle, the 24-h activity profile of Z. l. nuttalli closely resembled that of migrant relatives. Following photostimulation, most birds expressed some activity during the dark phase; however, the diel pattern differed greatly from that of migrants. Unlike Z. l. gambelii, peak activity levels during the light phase remained greater than those expressed during the dark phase. Furthermore, birds did not express a quiescent phase prior to the initiation of the dark phase, nor did photostimulation result in increases in body mass or fat deposits. However, two birds did exhibit migration-specific behaviours (beak-up and beak-up flight) coupled with intense dark phase locomotor activity, which is consistent with MR expression. The suite of contrasts between conspecifics however, may suggest a different context of nocturnal behaviour, perhaps representing an underlying ancestral migratory phenotype that may now be associated with territorial or reproductive activities.


2014 ◽  
Vol 281 (1795) ◽  
pp. 20140878 ◽  
Author(s):  
Kathryn McMahon ◽  
Kor-jent van Dijk ◽  
Leonardo Ruiz-Montoya ◽  
Gary A. Kendrick ◽  
Siegfried L. Krauss ◽  
...  

A movement ecology framework is applied to enhance our understanding of the causes, mechanisms and consequences of movement in seagrasses: marine, clonal, flowering plants. Four life-history stages of seagrasses can move: pollen, sexual propagules, vegetative fragments and the spread of individuals through clonal growth. Movement occurs on the water surface, in the water column, on or in the sediment, via animal vectors and through spreading clones. A capacity for long-distance dispersal and demographic connectivity over multiple timeframes is the novel feature of the movement ecology of seagrasses with significant evolutionary and ecological consequences. The space–time movement footprint of different life-history stages varies. For example, the distance moved by reproductive propagules and vegetative expansion via clonal growth is similar, but the timescales range exponentially, from hours to months or centuries to millennia, respectively. Consequently, environmental factors and key traits that interact to influence movement also operate on vastly different spatial and temporal scales. Six key future research areas have been identified.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jennifer N Phillips ◽  
Madhusudan Katti

Abstract Many animals learn to produce acoustic signals that are used to attract mates and defend territories. The structure of these signals can be influenced by external features of the environment, including the anthropogenic soundscape. In many sedentary species, habitat features and soundscape appears to influence the cultural evolution of songs, often with tradeoffs for better transmission over sexually selected song structure. However, none have investigated whether noise on the wintering grounds affects song structure, which for long-distance migrants may result in an acoustic ‘mismatch’ when returning to a breeding ground. This study investigates urban noise effects on song structure in a long-distance migrant, Zonotrichia leucophrys gambelii, on the wintering grounds in the Fresno Clovis Metropolitan Area and in outlying non-urban areas. Songs and background noise levels were recorded concurrently, and song measurements of frequency and duration were examined differences across noise levels and habitats . We found that the buzz and trill decrease in bandwidth in the presence of noise. The length of the whistle and buzz portion of the song also tends to decreases with noise in urban habitats. This trend toward short, pure tones in noisy areas may transmit better in noisy urban winter habitats, but may not be adaptive on quieter breeding grounds. We suggest that future studies should consider whether winter auditory feedback and song learning environments have consequences for song crystallization and breeding success for long-distance migrants.


The Condor ◽  
2002 ◽  
Vol 104 (1) ◽  
pp. 129-135 ◽  
Author(s):  
L. Michael Romero ◽  
Robin C. Romero

Abstract Corticosterone concentrations in birds usually rise in response to capture and handling, and it is often assumed that this change is predictable. We tested this assumption by leaving Gambel's White-crowned Sparrows (Zonotrichia leucophrys gambelii), House Sparrows (Passer domesticus), and Lapland Longspurs (Calcarius lapponicus) in nets or traps for 15 min following capture and comparing their corticosterone response over the next 60 min with birds removed immediately. White-crowned Sparrows and House Sparrows left in mist nets for 15 min and then bled had significantly elevated corticosterone concentrations compared to controls that were immediately removed from the net and bled. Corticosterone concentrations over the next 45 min of handling and restraint were similar between groups. In another experiment, White-crowned Sparrows and Lapland Longspurs were captured using seed-baited Potter traps. The corticosterone response of White-crowned Sparrows left in the trap for 15 min did not differ from White-crowned Sparrows removed immediately. Leaving Lapland Longspurs in the trap had no effect in the initial 10 min of handling and restraint, but at 30 and 60 min these birds had significantly lower corticosterone concentrations than longspurs removed immediately from the trap. These data indicate that failing to immediately remove birds from nets or traps can alter the corticosterone response to subsequent stressful stimuli in unpredictable ways. This result emphasizes that the elapsed time from capture is a critical variable in assessing stress responses in free-living birds. Respuestas de los Niveles de Corticosterona en Aves Silvestres: La Importancia de un Muestreo Inicial Inmediato Resumen. Las concentraciones de corticosterona en las aves usualmente aumentan en respuesta a la captura y manipulación, y muchas veces se supone que estos cambios son predecibles. Pusimos a prueba esta suposición reteniendo individuos de las especies Zonotrichia leucophrys gambelii, Passer domesticus y Calcarius lapponicus en redes o trampas durante los 15 minutos subsecuentes a la captura y comparamos sus respuestas en los niveles de corticosterona durante los siguientes 60 minutos con las de individuos removidos inmediatamente de las trampas y redes. Las muestras de sangre de Z. l. gambelii y P. domesticus que fueron obtenidas después de 15 minutos de retención en las redes tuvieron niveles de corticosterona significativamente más altos que las de los individuos control obtenidas inmediatamente después de la captura. Durante los 45 minutos siguientes de manipulación y captura, las concentraciones de corticosterona fueron similares entre los dos grupos. En otro experimento, Z. l. gambelii y C. lapponicus fueron capturados mediante trampas “Potter” cebadas con semillas. La respuesta en los niveles de corticosterona de Z. l. gambelii no fue diferente entre individuos retenidos en las trampas por 15 minutos e individuos removidos inmediatamente. Para individuos de C. lapponicus retenidos en las trampas no hubo un efecto durante los 10 minutos iniciales de manipulación y captura, pero a los 30 y 60 minutos estas aves tuvieron concentraciones significativamente menores que los individuos removidos inmediatamente. Estos resultados indican que al no remover inmediatamente a las aves de las redes o trampas, las respuestas en los niveles de corticosterona a estímulos estresantes pueden verse alteradas de una manera impredecible. Estos resultados enfatizan que en aves silvestres, el lapso de tiempo desde la captura es una variable crítica en la determinación de las respuestas al estrés.


1991 ◽  
Vol 69 (8) ◽  
pp. 2225-2229 ◽  
Author(s):  
Mary E. Murphy ◽  
James R. King

Nutritional constraints have often been invoked as either ultimate or proximate agents that account for variation in the schedule and intensity of molt and the quality of the new plumage. We examined this hypothesis by analyzing the dynamics of postnuptial molt and the condition of the new feathers in seven groups of White-crowned Sparrows (Zonotrichia leucophrys gambelii) in which the mean daily consumption of high-quality protein in otherwise balanced diets ranged from subadequate (0.20 g/bird) to superadequate (3.23 g/bird). Mean body mass during molt did not differ among the six groups consuming 0.46 g/bird-day or more (0.69, 0.97, 1.76, 1.99, and 3.23 g/bird-day) but was significantly less throughout molt (e.g., ca. 20 vs. 26 g in mid to late molt) in the group subsisting on 0.20 g/bird-day. The mean date of molt onset (27 June – 2 July) was statistically the same in all the groups, as was the duration of molt (51–57 days) in the six groups consuming 0.46 g or more of protein per day. In the lowest-protein group (0.20 g/bird-day) the molt lasted > 111 days. The protraction of molt resulted from both a slower growth rate of flight feathers and longer shedding intervals between them. The new primary remiges of the birds in this group averaged 4–9% shorter than in the six other groups, which were statistically indistinguishable from each other. These results are consistent with those of earlier experiments on the effects on molt of shortages of nutritionally balanced diets and of diets deficient only in sulfur amino acids. Molt is very resistant to the kinds of malnutrition that free-living birds may encounter. Only very severe levels of privation that sharply depress body mass and potentially threaten life significantly slow the rate of molt or reduce the quality of plumage.


1982 ◽  
Vol 39 (2) ◽  
pp. 326-334 ◽  
Author(s):  
D. W. Kulka ◽  
S. Corey ◽  
T. D. Iles

Seven species of euphausiids were found in the Bay of Fundy: Meganyctiphanes norvegica, Thysanoessa inermis, T. longicaudata, T. raschii, T. gregaria, Euphausia krohnii, and Nematoscelis megalops (listed in descending order of abundance). A high-intensity sampling scheme during November and March facilitated detailed distributional studies which revealed that M. norvegica, T. inermis, and T. longicaudata each had a specific stationary center of abundance in the study area, and each species performed a different pattern of diurnal vertical migration. Meganyctiphanes norvegica formed 90% (constituting 70 kt) of the euphausiids. The last four species were occasional immigrants from areas south of the Bay of Fundy. From the relationships between life history stages, vertical migration patterns, distribution, and currents in the Fundy Region, we suggest that these euphausiid species form stocks.Key words: euphausiids, Meganyctiphanes norvegica, Thysanoessa inermis, Thysanoessa longicaudata, biomass, community structure, stock, Bay of Fundy


Sign in / Sign up

Export Citation Format

Share Document