scholarly journals A survey of entomopathogenic nematodes of the families Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) in the north-west of Iran

Nematology ◽  
2009 ◽  
Vol 11 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Naser Eivazian Kary ◽  
Gholamreza Niknam ◽  
Seyed Abolgasem Mohammadi ◽  
Christine Griffin ◽  
Mohammad Moghaddam

AbstractDuring 2002-2004, a survey of entomopathogenic nematodes was conducted for the first time in Iran throughout the three provinces in the north-west of the country. Soil samples were tested for the presence of steinernematid and heterorhabditid nematodes by baiting with Galleria mellonella larvae. Of the 833 soil samples studied 27 were positive for entomopathogenic nematodes (3.2%), with 17 (2.0%) containing Heterorhabditis and ten (1.2%) Steinernema isolates. Morphological and molecular studies were carried out to characterise isolates. The Heterorhabditis isolates were identified as Heterorhabditis bacteriophora and Steinernema as Steinernema carpocapsae, S. bicornutum and S. feltiae. Heterorhabditis bacteriophora was the most common species, which was isolated from 17 sites across the three provinces. Steinernema feltiae was the most common species of Steinernema, which was isolated from eight sites but in only two provinces. Steinernema carpocapsae and S. bicornutum were each isolated from only one site. Steinernema spp. were isolated mainly from orchards and grasslands but Heterorhabditis was isolated mainly from grasslands and alfalfa fields.

Nematology ◽  
2003 ◽  
Vol 5 (4) ◽  
pp. 539-547 ◽  
Author(s):  
Dammini Premachandra ◽  
Christian Borgemeister ◽  
Oliver Berndt ◽  
Ralf-Udo Ehlers ◽  
Hans-Michael Poehling

Abstract The efficacy of entomopathogenic nematodes (EPN) was evaluated in a laboratory trial against soil-dwelling stages, late second instar larvae and pupal stages of western flower thrips (WFT), Frankliniella occidentalis Pergande. Among the six EPN strains assessed for the first time, Steinernema feltiae (Nemaplus®) and Heterorhabditis bacteriophora (HD01) caused 65 and 59% mortality, respectively. Steinernema carpocapsae (Agriotos) and S. arenarium (Anomali) caused moderate mortality (40-45%) while Steinernema spp. (Morocco) and H. bacteriophora (Nematop®) had little effect. In a dose response study with concentrations of 100, 400 and 800 infective juveniles (IJ) per cm2 soil of H. bacteriophora (HK3), S. feltiae (Nemaplus®) and H. bacteriophora (HD01), mortality increased only up to 400 IJ cm-2. The rate of infectivity of H. bacteriophora (HK3) and S. feltiae (Nemaplus®) indicated that both strains could survive at least 6 days in the soil and infect WFT immature stages.


2020 ◽  
Vol 6 (4) ◽  
pp. 359
Author(s):  
Jiří Nermuť ◽  
Jana Konopická ◽  
Rostislav Zemek ◽  
Michal Kopačka ◽  
Andrea Bohatá ◽  
...  

Entomopathogenic nematodes and fungi are globally distributed soil organisms that are frequently used as bioagents in biological control and integrated pest management. Many studies have demonstrated that the combination of biocontrol agents can increase their efficacy against target hosts. In our study, we focused on another potential benefit of the synergy of two species of nematodes, Steinernema feltiae and Heterorhabditis bacteriophora, and the fungus Isaria fumosorosea. According to our hypothesis, these nematodes may be able to disseminate this fungus into the environment. To test this hypothesis, we studied fungal dispersal by the nematodes in different arenas, including potato dextrose agar (PDA) plates, sand heaps, sand barriers, and glass tubes filled with soil. The results of our study showed, for the first time, that the spreading of both conidia and blastospores of I. fumosorosea is significantly enhanced by the presence of entomopathogenic nematodes, but the efficacy of dissemination is negatively influenced by the heterogeneity of the testing arena. We also found that H. bacteriophora spread fungi more effectively than S. feltiae. This phenomenon could be explained by the differences in the presence and persistence of second-stage cuticles or by different foraging behavior. Finally, we observed that blastospores are disseminated more effectively than conidia, which might be due to the different adherence of these spores (conidia are hydrophobic, while blastospores are hydrophilic). The obtained results showed that entomopathogenic nematodes (EPNs) can enhance the efficiency of fungal dispersal.


1997 ◽  
Vol 75 (12) ◽  
pp. 2137-2141 ◽  
Author(s):  
Ganpat B. Jagdale ◽  
Roger Gordon

Four strains of entomopathogenic nematodes were recycled in vivo for 2 years at temperatures ranging from 10 to 25 °C, then the infectivity of their infective juveniles was compared. Infectivity was examined by measuring LC50 values for wax moth (Galleria mellonella) larvae at bioassay temperatures ranging from 5 to 25 °C. Of the four strains examined, only the Umeå and NF strains of Steinernema feltiae that had been recycled at 10 °C infected and killed the insects at a bioassay temperature of 5 °C. The Steinernema carpocapsae All and Steinernema riobravis TX strains were infective at 10 °C only when the recycling temperature was ≤ 20 °C. The infectivity of the two strains of S. feltiae at 10 or 15 °C was compromised by propagating them at higher temperatures (20–25 °C). The Umeå strain of S. feltiae displayed an impaired capacity to infect hosts at higher temperatures (20–25 °C) when recycled at lower (≤ 15 °C) temperatures. The capacity of these nematodes to adjust to different recycling temperatures is discussed in relation to their infectivity in different field situations.


Nematology ◽  
2010 ◽  
Vol 12 (5) ◽  
pp. 767-773 ◽  
Author(s):  
Mostafa Nikdel ◽  
Gholamreza Niknam ◽  
Christine T. Griffin ◽  
Naser Eivazian Kary

Abstract A survey for entomopathogenic nematodes (EPN) was carried out in the Arasbaran forests and rangelands, East Azarbaijan province, north-west Iran, during 2006 to 2008. A total of 691 soil samples were collected from 62 localities across the region of which 21 samples (3%) were positive for EPN, including nine samples (1.3%) with heterorhabditids and 12 (1.7%) with steinernematids. Seven isolates (four Steinernema and three Heterorhabditis) were recovered from rangelands and 14 (eight Steinernema and six Heterorhabditis) from forest soil samples. Based on morphology and molecular studies, the Heterorhabditis isolates were identified as H. bacteriophora and the Steinernema isolates as S. carpocapsae, S. bicornutum, S. feltiae, S. glaseri, S. kraussei and three undescribed species referred to here as Steinernema sp. IRAZ7, Steinernema sp. IRAZ13 and Steinernema sp. IRAZ21. Heterorhabditis bacteriophora, the most common species, was present in nine soil samples collected across the forests and rangelands, and of the Steinernema species, S. bicornutum was obtained from three samples, the other species being found from only one or two samples.


1996 ◽  
Vol 70 (4) ◽  
pp. 319-327 ◽  
Author(s):  
J.S. Miduturi ◽  
M. Moens ◽  
W.M. Hominick ◽  
B.R. Briscoe ◽  
A.P. Reid

AbstractThe presence of naturally occurring entomopathogenic nematodes (epns) was surveyed in the West-Flanders province in the north-west of Belgium. In 21 sites of different agronomical situations, 130 soil samples were taken. Using the Galleria larva bait technique, 16 soil samples were found positive for epns. Fifteen samples were found to contain Steinernema spp. (nine S.feltiae, five S. affinis, one Steinemema species B3). The remaining positive sample contained Heterorhabditis sp. (North West European strain). The morphometric characters of the isolates were highly variable and did not correspond precisely to the original descriptions; however, biochemical characterization confirmed their identity. The epns were isolated from 50%, 18.8% or 12.3% of the samples taken in sand dunes, grassland or woodlands, respectively. S. feltiae and S. affinis were isolated in these three habitats; Heterorhabditis sp. was found in a grassland habitat. Steinernema feltiae was prevalent in loamy sand soils with a wide range of organic matter content; S. affinis, Heterorhabditis sp. and Steinernema species B3 were isolated in sandy loam soils. All the positive sample sites were in the pH range of 4.0–8.1. This is the first report of naturally occurring entomopathogenic nematodes in Belgium.


Nematology ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 851-858 ◽  
Author(s):  
Cassandra Edmunds ◽  
Rory J. Post ◽  
Craig S. Wilding ◽  
Robbie Rae

Summary Entomopathogenic nematodes (EPN) of the families Steinernematidae and Heterorhabditidae are lethal insect parasites that have been commercialised as biological control agents. EPN have been isolated from across the world but it has been more than 20 years since the last survey of the UK, and species like Steinernema carpocapsae have never been found here and positively identified through molecular biology. We collected 518 soil samples from a diverse range of habitats across the UK and baited them with Galleria mellonella to isolate EPN. Dead G. mellonella were placed in White traps and emergent EPN underwent DNA barcoding analyses. From the 518 samples, 3.5% were positive for EPN. No Heterorhabditis species were found, but seven isolates of S. glaseri, one isolate of S. feltiae, eight isolates of S. affine and two isolates of S. carpocapsae were found. This was the first confirmed record of S. carpocapsae in the UK.


2015 ◽  
Vol 52 (2) ◽  
pp. 118-122 ◽  
Author(s):  
I. A. Susurluk ◽  
T. C. Ulu

Summary Entomopathogenic nematodes (EPNs) are environmentally safe alternative control agents. Nematodes in the Heterorhabditidae and Steinernematidae families are widely used in biological control frameworks, especially for soil-inhabiting insect pests. In this experiment, Heterorhabditis bacteriophora (Poinar, 1976), Steinernema feltiae (Filipjev, 1934) and S. carpocapsae (Weiser, 1955) adapted at high temperature were assessed in order to detect differences in virulence between adapted and non-adapted populations. All species were exposed to 38 °C for 2 h. After this treatment, live infective juveniles (IJs) were used to infect to last instar Galleria mellonella (Linnaeus, 1758). larvae at the following doses: 1, 2, 3, 4 and 5 IJs/larva. The LD50 and LD90 were obtained for these species. Non-adapted populations of the nematode species were used as controls for this experiment. The results indicated that differences in S. feltiae and S. carpocapsae virulence between the adapted and non-adapted populations were significant; no significant difference was observed between the adapted and non-adapted H. bacteriophora populations.


Nematology ◽  
2008 ◽  
Vol 10 (1) ◽  
pp. 137-141 ◽  
Author(s):  
I. Alper Susurluk

Abstract The vertical movement of Turkish isolates of Steinernema feltiae (TUR-S3) and Heterorhabditis bacteriophora (TURH2) was compared at different temperatures in the presence and absence of larvae of the host insect, Galleria mellonella. Nematodes of both species moved faster towards the bottom of the column when an insect was placed there. Steinernema feltiae showed greater vertical dispersal ability than H. bacteriophora. The vertical movement of both species increased as the temperature increased and lower temperatures depressed the movement of H. bacteriophora more than S. feltiae. The nematodes that had migrated different distances were compared for their infectivity to G. mellonella and the positive correlations between distance travelled and infectivity indicate that there is a link between host searching behaviour and infection behaviour in S. feltiae and, to a lesser extent, also in H. bacteriophora.


2019 ◽  
Vol 3 (3) ◽  
pp. 131-139
Author(s):  
Tabassum Ara Khanum, Salma Javed, Nasir Mehmood

Many rhabditid nematodes like Metarhabditis belonging to the bacteriophage group are considered to be necromenic associates of insects and used to be facultative entomopathogenic nematodes or as biocontrol agents. These nematodes can be safely used against insect pests of different crops and vegetables. In the present study, nematode specimens of new and known species were collected from different areas of Sindh and isolated from soil samples by baiting technique using last instar Galleria mellonella. One new nematode species Metarhabditis longicaudata n. sp. and three new records of M. adenobia, M. amasactae, and M. rainai (Nematoda: Rhabditidae) were found from Sindh. M. longicaudata n. sp. differed from the species of the genus Metarhabditis by having long un-covered tail spike. It was also characterized by a large sized male 1286 (1154-1325) µm; longer male tail 69.5 (62-76) µm; longer spicule 43 (40-46) µm; leptoderan bursa; longer gubernaculum 27 (20-34) µm. The female was also of large size of 1507 (1366-1684) µm with larger tail 102 (94-112) µm and longer pharynx 231 (206-265) µm. The genus Metarhabditis is reported for the first time from Sindh, Pakistan. 


2018 ◽  
Vol 20 (2) ◽  
pp. 91-101
Author(s):  
Andressa Lima de Brida ◽  
Silvia Renata Siciliano Wilcken ◽  
Luis Garrigós Leite

Nematoides entomopatogênicos (NEPs) são alternativas eficientes para o controle de pragas. O emprego de novas técnicas da produção in vivo, permite o progresso da tecnologia de formulação de bioinseticidas. O objetivo do trabalho, foi avaliar a influência da luminosidade e do substrato na capacidade de infecção de juvenis infectantes (JIs) de Steinernema brazilense IBCBn 06, Steinernema carpocapsae IBCBn 02, Steinernema feltiae IBCBn 47 e Heterorhabditis amazonensis IBCBn 24 em lagartas de Galleria mellonella (Lepidoptera: Pyralidae). O delineamento experimental foi inteiramente casualizado com quatro tratamentos e oito repetições. As parcelas, constituídas por placa de Petri com, substrato-areia e substrato-papel filtro, com e sem luminosidade, inoculados com suspensão de 1,5 mL contendo 400JIs e quatro lagartas de G. mellonella. O número de JIs foi quantificado após a mortalidade das lagartas. A taxa de infecção de JIs de S. carpocapsae IBCBn 02 e S. feltiae IBCBn 47 variaram de 2,14 a 3,28 e de 11,04 a 13,09 JIs/lagarta. O substrato-areia com e sem luminosidade permitiu a maior taxa de infeção dos JIs de S. brazilense IBCBn 06 de 7,86 e 9,44 JIs/lagarta, e 13,49 JIs/lagarta com luminosidade para H. amazonensis IBCBn 24. O substrato-areia, permite a maior taxa de infecção por JIs de NEPs.


Sign in / Sign up

Export Citation Format

Share Document