Early gonadal development and sex differentiation in rosy barb (Puntius conchonius)

2006 ◽  
Vol 56 (3) ◽  
pp. 335-350 ◽  
Author(s):  
Şehriban Çek

AbstractThe main objective of this study was to describe the early gonadal development and to examine the process of sex differentiation in male and female P. conchonius under laboratory conditions. First evidence of primordial germ cells was observed on the day of hatching. The sex differentiation in leptotene, zygotene, pachytene and diplotene stages was clearly detected. Differentiation started from the mid-mid posterior part of the gonads. Actual sex differentiation occurred between 18-21 days and 36-40 days post-hatching in females and males, respectively. Histological sex differentiation differences were clear between males and females; in males, gonads had a smooth surface, were less stained, arrow-shaped, with germ cells located alone in the stroma, and number of germ cells ranging from two to ten per section, whereas in females, gonads had a rough surface, were more stained, wider, with germ cells multiplying rapidly and forming clusters, and number of germ cells ranged from 2 to 58 per section. The numbers of germ cells within the two gonad types were significantly different in favour of females (P < 0.05). Here early developmental stages of the gonads from 0 to 56 days post-hatch are explained.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Aleksandra Dunislawska ◽  
Agata Szczerba ◽  
Maria Siwek ◽  
Marek Bednarczyk

Abstract Objective Regulation of gene expression during embryo development on the basis of migration of primordial germ cells (PGCs) in vivo has been rarely studied due to limited cell number and the necessity to isolate PGCs from a large number of embryos. Moreover, little is known about the comprehensive dynamics of the transcriptome in chicken PGCs during early developmental stages. The current study investigated transcriptome dynamics of chicken PGCs at key developmental stages: 4.5, 8 and 12 days of embryo incubation. PGCs were collected, and RNA was isolated using a commercial kit for single cells. The isolated RNA was subjected to microarray analysis (Agilent Technologies). Results Between 8 and 12 days of incubation, the highest number of genes was regulated. These data indicate that the most intense biological activity occurs between 8 and 12 days of embryo development. Heat map showed a significant decrease in gene expression on day 8, while it increased on day 12. The development of a precise method to isolate bird PGCs as well as the method to isolate RNA from single cells isolated from one embryo allows for early molecular analysis and detection of transcriptome changes during embryonic development.


Development ◽  
1963 ◽  
Vol 11 (4) ◽  
pp. 715-740
Author(s):  
Heather M. Beaumont ◽  
Anita M. Mandl

In mammals, as in other vertebrates, primordial germ cells arise extra-gonadally and migrate to the genital ridges (see Franchi, Mandl & Zuckerman, 1962). In the rat, the gonads undergo sex differentiation on the 14th day of gestation, i.e. some 2 days after the arrival of the primordial germ cells. In the female rat, the number of oögonia increases sharply, due to active mitotic proliferation, between the 14th and 18th day of gestation. Thereafter, the majority of germ cells enter the prophase of meiosis, and thus, by definition, become oöcytes. A large number of oöcytes undergo spontaneous degeneration, with the result that the total population decreases from a peak of about 75,000 (at 18·5 days) to about a third that number 2 days after birth. The decrease in the population is due to three distinct ‘waves’ of degeneration occurring at specific developmental stages (Beaumont & Mandl, 1962).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura Soler ◽  
Sabine Alves ◽  
Aurélien Brionne ◽  
Aurore Jacques ◽  
Vanessa Guérin ◽  
...  

AbstractIn poultry, in vitro propagated primordial germ cells (PGCs) represent an important tool for the cryopreservation of avian genetic resources. However, several studies have highlighted sexual differences exhibited by PGCs during in vitro propagation, which may compromise their reproductive capacities. To understand this phenomenon, we compared the proteome of pregonadal migratory male (ZZ) and female (ZW) chicken PGCs propagated in vitro by quantitative proteomic analysis using a GeLC-MS/MS strategy. Many proteins were found to be differentially abundant in chicken male and female PGCs indicating their early sexual identity. Many of the proteins more highly expressed in male PGCs were encoded by genes localised to the Z sex chromosome. This suggests that the known lack of dosage compensation of the transcription of Z-linked genes between sexes persists at the protein level in PGCs, and that this may be a key factor of their autonomous sex differentiation. We also found that globally, protein differences do not closely correlate with transcript differences indicating a selective translational mechanism in PGCs. Male and female PGC expressed protein sets were associated with differential biological processes and contained proteins known to be biologically relevant for male and female germ cell development, respectively. We also discovered that female PGCs have a higher capacity to uptake proteins from the cell culture medium than male PGCs. This study presents the first evidence of an early predetermined sex specific cell fate of chicken PGCs and their sexual molecular specificities which will enable the development of more precise sex-specific in vitro culture conditions for the preservation of avian genetic resources.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1090
Author(s):  
Aleksandra Dunislawska ◽  
Maria Siwek ◽  
Katarzyna Stadnicka ◽  
Marek Bednarczyk

The Green-legged Partridgelike fowl is a native, dual-purpose Polish chicken. The White Leghorn has been intensively selected for several decades to mainly improve reproductive traits. Primordial germ cells (PGCs) represent the germline stem cells in chickens and are the only cells that can transfer the information stored in the genetic material from generation to generation. The aim of the study was to carry out a transcriptomic and an epigenetic comparison of the White Leghorn and Green-legged Partridgelike gonadal PGCs (gPGCs) at three developmental stages: days 4.5, 8, and 12 of the embryonic development. RNA and DNA were isolated from collected gPGCs. The RNA was further subjected to microarray analysis. An epigenetic analysis was performed based on the global methylation analysis and qMSP method for the particular silenced genes demonstrated in transcriptomic analysis. Statistically significant differences between the gPGCs from both breeds were detected on the day 8 of embryonic development. Global methylation analysis showed significant changes at the methylation level in the White Leghorn gPGCs on day 8 of embryonic development. The results suggest faster development of Green-legged Partridgelike embryos as compared to White Leghorn embryos. Changes in the levels of gene expression during embryonic development are determined by genetic and environmental factors, and this variability is influenced by breed and gender.


Development ◽  
1962 ◽  
Vol 10 (4) ◽  
pp. 465-470
Author(s):  
Charles L. Foote ◽  
Florence M. Foote

Earlier reports (Foote & Foote, 1958a, b, 1959) describe growth and maintenance in vitro of larval organs, particularly gonads, of Rana catesbeiana and Xenopus laevis. Immature germ cells of both testes and ovaries are well maintained in vitro, especially if the culture medium is supplemented with watersoluble sex-hormonal substances, although germ cells in process of maturation become necrotic. Recently some urogenital organs from the salamander, Pleurodeles waltlii, have been grown in vitro. Tissues and organs from this amphibian might prove to be more suitable for tissue and organ culture investigations than those of Anurans. Animals at three different ages were used in this study: recently hatched larvae, metamorphosing animals, and adults. To determine whether sex differentiation would occur in vitro, trunk portions of young larvae of Pleurodeles waltlii of developmental stages 37–38 (Gallien & Durocher, 1957) were placed in organ cultures.


Development ◽  
1998 ◽  
Vol 125 (14) ◽  
pp. 2665-2675 ◽  
Author(s):  
R.S. Viger ◽  
C. Mertineit ◽  
J.M. Trasler ◽  
M. Nemer

Mammalian gonadal development and sexual differentiation are complex processes that require the coordinated expression of a specific set of genes in a strict spatiotemporal manner. Although some of these genes have been identified, the molecular pathways, including transcription factors, that are critical for the early events of lineage commitment and sexual dimorphism, remain poorly understood. GATA-4, a member of the GATA family of transcription factors, is present in the gonads and may be a regulator of gonadal gene expression. We have analyzed the ontogeny of gonadal GATA-4 expression by immunohistochemistry. GATA-4 protein was detected as early as embryonic day 11.5 in the primitive gonads of both XX and XY mouse embryos. In both sexes, GATA-4 specifically marked the developing somatic cell lineages (Sertoli in testis and granulosa in ovary) but not primordial germ cells. Interestingly, abundant GATA-4 expression was maintained in Sertoli cells throughout embryonic development but was markedly down-regulated shortly after the histological differentiation of the ovary on embryonic day 13.5. This pattern of expression suggested that GATA-4 might be involved in early gonadal development and possibly sexual dimorphism. Consistent with this hypothesis, we found that the Mullerian inhibiting substance promoter which harbors a conserved GATA element is a downstream target for GATA-4. Thus, transcription factor GATA-4 may be a new factor in the cascade of regulators that control gonadal development and sex differentiation in mammals.


Development ◽  
1972 ◽  
Vol 28 (2) ◽  
pp. 385-395
Author(s):  
Noriyuki Satoh ◽  
Nobuo Egami

Mitotic and meiotic activities of germ cells during early development in the medaka, Oryzias latipes, are dealt with in this report. Primordial germ cells were obviously distinguishable from somatic cells 3 days after fertilization and began to proliferate about 7 days after fertilization. The mean number of primordial germ cells increased during a period of 7–10 days after fertilization, reaching about 90 immediately before hatching. Newly hatched fry could be classified into two types according to the number and the nucleic activity of germ cells in the gonadal rudiment. One type consisted of fry containing about 100 germ cells and no cells in the meiotic prophase. In the other type of fry the number of germ cells increased by mitotic divisions and some of the cells began to enter into the meiotic prophase. During the course of further development the fry of the former type differentiated into males and the latter into females. Therefore it can be concluded that the morphological sex differentiation of germ cells occurs at the time of hatching. However, no sexual differences in the histological structure of somatic elements in the gonad are observable at that time.


Reproduction ◽  
2013 ◽  
Vol 146 (1) ◽  
pp. R37-R48 ◽  
Author(s):  
Jessica M Stringer ◽  
Sanna Barrand ◽  
Patrick Western

In mice, epiblast cells found both the germ-line and somatic lineages in the developing embryo. These epiblast cells carry epigenetic information from both parents that is required for development and cell function in the fetus and during post-natal life. However, germ cells must establish an epigenetic program that supports totipotency and the configuration of parent-specific epigenetic states in the gametes. To achieve this, the epigenetic information inherited by the primordial germ cells at specification is erased and new epigenetic states are established during development of the male and female germ-lines. Errors in this process can lead to transmission of epimutations through the germ-line, which have the potential to affect development and disease in the parent's progeny. This review discusses epigenetic reprogramming in the germ-line and the transmission of epigenetic information to the following generation.


2020 ◽  
pp. 42-52
Author(s):  
María Gil Juliá ◽  
José V. Medrano

The murine model has allowed for the replication of all developmental stages of the mammalian germline in vitro, from embryonic stem cells to epiblast cells, primordial germ cells, and finally into functional haploid gametes. However, because of interspecies differences between mice and humans, these results are yet to be replicated in our species. Reports on the use of stem cells as a source of gametes, retrieved from public scientific databases, were analysed and classified according to the animal model used, the stem cell source and type, the differentiation strategy, and its potential application. This review offers a comprehensive compilation of recent publications of key events in the derivation of germ cells and gametogenesis in vitro, in both mice and human models. Additionally, studies intending to replicate the different stages in human cells in vitro, in order to obtain cells with a phenotype akin to functional human gametes, are also depicted. The authors present options for deriving gametes from stem cells in vitro and different reproductive options for specific groups of patients. Lastly, the potential applications of in vitro human gametogenesis are evaluated as well as the main limitations of the techniques employed. Even though it appears that we are far from being able to obtain gametes from pluripotent stem cells in vitro as a viable reproductive option, its current academic and clinical implications are extremely promising.


Sign in / Sign up

Export Citation Format

Share Document