The Effect of Temperature and Nematode Species On Interactions Between the Nematophagous Fungus Verticillium Chlamydosporium and Root-Knot Nematodes (Meloidogyne Spp.)

Nematologica ◽  
1992 ◽  
Vol 38 (1-4) ◽  
pp. 65-79 ◽  
Author(s):  
J.A. Dennehy ◽  
B.R. Kerry ◽  
F.A.A.M. De Leij
1995 ◽  
Vol 73 (S1) ◽  
pp. 65-70 ◽  
Author(s):  
B. R. Kerry

The nematophagous fungus, Verticillium chlamydosporium, has considerable potential as a biological control agent for root-knot nematodes on a range of crops. The fungus is a general facultative parasite that attacks the eggs of several nematode species. The biology of the fungus is reviewed and the need for a detailed understanding of its ecology for its rational use as a biological control agent is highlighted. Isolates of the fungus must colonize the rhizosphere to be effective control agents. Plants differ in their ability to support the fungus and greatest control is achieved on those cultivars that support abundant growth of the fungus but produce only limited galling in response to nematode attack. On such plants, most eggs produced by nematodes are exposed to parasitism by this nematophagous fungus in the rhizosphere. Key words: biological control, nematophagous fungi, root-knot nematodes, Verticillium chlamydosporium.


2005 ◽  
Vol 95 (4) ◽  
pp. 368-375 ◽  
Author(s):  
Nicola Vovlas ◽  
Hava F. Rapoport ◽  
Rafael M. Jiménez Díaz ◽  
Pablo Castillo

Root-knot nematodes (Meloidogyne spp.) are sedentary, obligate endoparasites in plants, where they induce specialized feeding sites. The feeding sites act as strong metabolic sinks to which photosynthates are mobilized. The histopathological modifications in the nematode-induced feeding sites of artificially inoculated chickpea cv. UC 27 were qualitatively and quantitatively compared using five isolates of M. artiellia and one isolate each of M. arenaria, M. incognita, and M. javanica. All Meloidogyne isolates infected chickpea plants, but root gall thickening was significantly less for M. artiellia isolates than for the other Meloidogyne species. Nevertheless, neither the number of giant cells in the feeding site (averaging four to six) nor the area of individual giant cells was influenced by nematode species or isolate. However, the number of nuclei per giant cell was significantly smaller, and the maximum diameters of nuclei and nucleoli were significantly greater, in giant cells induced by M. artiellia isolates than in those induced by M. arenaria, M. incognita, or M. javanica. In a second experiment, M. artiellia-induced giant cells in faba bean and rapeseed also contained a small number of large nuclei.


Plant Disease ◽  
2007 ◽  
Vol 91 (11) ◽  
pp. 1514-1514 ◽  
Author(s):  
I. Pajovic ◽  
S. Širca ◽  
B. Geric Stare ◽  
G. Urek

Root-knot nematodes (Meloidogyne spp.) are common pathogens that parasitize vegetables and other crops and cause significant yield reductions worldwide. In the early spring of 2006, severe plant stunting, chlorosis, and extensive root galling were observed on cucumber plants grown in a greenhouse on Zeta plain, Zetska ravnica, Montenegro. In the summer and autumn of 2006, infected roots of different crops were collected from greenhouses and vegetable production fields of Zeta plain, which represents the largest area of Montenegro's vegetable production. Several vegetable crops were found to be infected with root-knot nematodes, including tomato (Lycopersicon esculentum Mill.), squash (Cucurbita pepo L.), cucumber (Cucumis sativus L.), pepper (Capsicum annuum L.), and lettuce (Lactuca sativa L.). Symptoms on these crops included root-galling, leaf chlorosis, and stunting. Heavily infected tomato plants growing in two greenhouses also displayed early flower and fruit drop. Nematode species were determined based on characterization of (i) female perineal patterns, (ii) male and second-stage juvenile morphology (2,3), and (iii) esterase and malate dehydrogenase phenotypes (PhastSystem; Amersham Biosciences, Piscataway, NJ) from young egg-laying females (1). The most prevalent species was M. incognita, which was isolated from the roots of tomatoes, peppers, cucumbers, and lettuce from nine locations. Meloidogyne arenaria was detected at three locations from the roots of tomatoes grown in a greenhouse and the weeds Convolvulus arvensis L. and Solanum nigrum L., which were growing in open fields in separate locations. M. javanica was found on tomato and squash in the same field where M. arenaria was also found on S. nigrum. M. javanica was isolated from tomato and squash. In this study, we found high incidence of Meloidogyne spp. in intensive vegetable production areas of Montenegro. The implementation of an effective integrated pest management program is essential for future use of infested areas. To our knowledge, this is the first report of M. arenaria, M. incognita, and M. javanica from Montenegro. References: (1) P. R. Esbenshade and A. C. Triantaphyllou. J. Nematol. 17:6, 1985. (2) S. B. Jepson. Identification of Root-Knot Nematodes. CAB International, Wallingford, UK, 1987. (3) G. Karssen. The Plant-Parasitic Nematode Genus Meloidogyne Göldi, 1892 (Tylenchida) in Europe. Koninklijke Brill NV, Leiden, the Netherlands, 2002.


2020 ◽  
Vol 38 (3) ◽  
pp. 239-245
Author(s):  
Jadir B Pinheiro ◽  
Giovani Olegário da Silva ◽  
Danielle Biscaia ◽  
Amanda G Macedo ◽  
Fábio A Suinaga

ABSTRACT Genetic resistance is the most suitable mechanism to control root-knot nematodes in lettuce. However, information about the resistance levels of currently used lettuce cultivars is scarce in the literature. Thus, the objective of this research was to characterize lettuce cultivars for resistance to root-knot nematodes Meloidogyne incognita (Mi) and M. javanica (Mj), aiming the identification of resistance sources for breeding, and to transfer information to the productive sector. We evaluated 97 lettuce genotypes in tree trials. In the first one (preliminary assessment), 92 lettuce genotypes were inoculated simultaneously with M. incognita race 1 and M. javanica species, 17 days after sowing. The gall index (GI) was evaluated 41 days after inoculation. In the second trial nine genotypes, selected from the first trial, were evaluated; and in the third trial, two new cultivars from Embrapa were evaluated. In the last two trials, the nematode species were inoculated separately, and the egg mass index (EMI), number of eggs per gram of roots (NEGR) and reproduction factor (RF) were also evaluated. In both trials, the lettuce cultivars Salinas 88 and Grand Rapids were used as resistant controls, as well as cultivar Irene as the susceptible control. The data were submitted to analysis of variance and treatments means grouping by Scott-Knott´s test. The crisp leaf cultivars presented a higher degree of resistance to the root-knot nematodes compared to the smooth leaf type cultivars. Cultivars Vera and Amanda present resistance to M. incognita, and Vanda to M. javanica. ‘Salinas 88’ present resistance mainly to M. javanica; while cultivar Mônica and the Embrapa cultivars BRS Leila and BRS Mediterrânea are resistant to both nematode species.


Plant Disease ◽  
1997 ◽  
Vol 81 (11) ◽  
pp. 1333-1333 ◽  
Author(s):  
A. Zazzerini ◽  
L. Tosi ◽  
P. M. Vicente

Sunflower (Helianthus annuus L.) recently was reintroduced to Mozambique because of renewed interest in oil-seed production for domestic consumption. In April 1997, disease surveys were carried out in two fields in southern Mozambique (Maputo region). Several plants of Pan 735, a South African cultivar, showed yellowing of the leaves and stunting. These plants wilted during the day but recovered their turgidity at night. Diseased plants were easily pulled from the soil due to almost complete destruction of the root system. Numerous galls were found on affected roots, compared with healthy plants. Meloidogyne javanica (Treub) Chitwood and M. incognita (Kofoid & White) Chitwood were identified by M. Di Vito (personal communication) based on 20 female perineal patterns observed with a light microscope. M. incognita was more prevalent than M. javanica. Also observed were Alternaria helianthi (Hansf.) Tubaki & Nishihara and Sclerotium bataticola Taub. Root-knot nematodes (Meloidogyne spp.), common on sunflower, cause severe damage and reduce both seed yield and seed oil content (1). These two nematode species have also been observed on sunflower in other African countries (Zambia, South Africa, Egypt) but this is the first report of root-knot nematode on sunflower in Mozambique. Reference: (1) M. Di Vito et al. Nematol. Medit. 24:109, 1996.


2018 ◽  
Vol 20 (1) ◽  
pp. 11-16
Author(s):  
MUTALA’LIAH MUTALA’LIAH ◽  
SIWI INDARTI ◽  
ARIF WIBOWO

Mutala’liah, Indarti S , Wibowo A. 2019. Short Communication: The prevalence and species of root-knot nematode which infect on potato seed in Central Java, Indonesia. Biodiversitas 20: 11-16. Root-knot nematodes are considered as one of the most destructive pathogens of potatoes, especially on tuber seed. Infected potato seed will cause tuber malformation and the most important thing is as the main spreading source of Meloidogyne spp. The objective of this research was to know the prevalence and identify the species of root-knot nematode which attack the potato seed in four sub-districts of potato production centre in Central Java, Indonesia. Molecular and morphological identification was conducted for the nematode species identification. PCR assay using MIG primer to detect three tropical root-knot nematodes followed by sequencing was conducted for molecular detection, while the perennial pattern was conducted for morphological detection. Results showed that root-knot nematodes on potato seed were generally distributed in Central Java with the prevalence percentage between 14.28-88.23% on the three from four sampling area. The molecular and morphological identification show that species of root-knot nematodes identified on potato seeds were Meloidogyne javanica, M. incognita, and M. arenaria.


Parasitology ◽  
2001 ◽  
Vol 122 (1) ◽  
pp. 111-120 ◽  
Author(s):  
K.G. DAVIES ◽  
M. FARGETTE ◽  
G. BALLA ◽  
A. DAUDI ◽  
R. DUPONNOIS ◽  
...  

The cuticle is a major barrier prohibiting the infection of nematodes against micro-organisms. The attachment of bacterial spores of the nematode hyperparasite Pasteuria penetrans (PP1) to field populations of root-knot nematodes (RKN, Meloidogyne spp.) from Burkino Faso, Ecuador, Greece, Malawi, Senegal and Trinidad and Tobago were assayed in standard attachment tests. The attachment of spore population PP1 to different field populations of root-knot nematode showed that the rates of attachment differed between countries. Similar tests were also undertaken on P. penetrans spores from these countries against 2 species of RKN, M. incognita and M. arenaria. The results showed a high degree of variability in spore attachment with no clear distinction between the 2 species of nematode. It has been hypothesized that Pasteuria spore attachment is linked to nematode species designations and this study clearly shows that this is not the case. Further tests showed that variation in spore attachment was not linked to nematode phylogeny. The results therefore beg the question of how do parthenogenetic root-knot nematodes maintain cuticle variability in the face of such an aggressive hyperparasite.


Sign in / Sign up

Export Citation Format

Share Document