Libanorhinus succinus gen. & sp. n. (Coleoptera: Nemonychidae) from Lebanese amber

1993 ◽  
Vol 24 (2) ◽  
pp. 143-146 ◽  
Author(s):  
G. Kuschel ◽  
G.O. Poinar

AbstractThe nemonychid, Libanorhinus succinus gen. & sp. n. represents the first weevil to be reported from Lebanese amber and the first formal description of a representative of the family Nemonychidae from any amber source. The specimen is placed in the extinct subfamily Eobelinae on the basis of its elytral punctures lined up to form striae, the presence of scutellar strioles and the possession of simple claws. The vertex of the head, antennal insertions at about the apical quarter of the rostrum and abdominal ventrites distinguish it from previously described fossil species in the Eobelinae. Since many extant nemonychids feed and develop in the male cones of representatives of the Araucariaceae, the present fossil could have developed in the cones of this resin-producing tree family.

2021 ◽  
pp. 1-15
Author(s):  
Juan López-Gappa ◽  
Leandro M. Pérez ◽  
Ana C.S. Almeida ◽  
Débora Iturra ◽  
Dennis P. Gordon ◽  
...  

Abstract Bryozoans with calcified frontal shields formed by the fusion of costae, collectively constituting a spinocyst, are traditionally assigned to the family Cribrilinidae. Today, this family is regarded as nonmonophyletic. In the Argentine Cenozoic, cribrilinids were until recently represented by only two fossil species from the Paleocene of Patagonia. This study describes the first fossil representatives of Jolietina and Parafigularia: J. victoria n. sp. and P. pigafettai n. sp., respectively. A fossil species of Figularia, F. elcanoi n. sp., is also described. The material comes from the early Miocene of the Monte León and Chenque formations (Patagonia, Argentina). For comparison, we also provide redescriptions of the remaining extant species of Jolietina: J. latimarginata (Busk, 1884) and J. pulchra Canu and Bassler, 1928a. The systematic position of some species previously assigned to Figularia is here discussed. Costafigularia n. gen. is erected, with Figularia pulcherrima Tilbrook, Hayward, and Gordon, 2001 as type species. Two species previously assigned to Figularia are here transferred to Costafigularia, resulting in C. jucunda n. comb. and C. tahitiensis n. comb. One species of Figularia is reassigned to Vitrimurella, resulting in V. ampla n. comb. The family Vitrimurellidae is here reassigned to the superfamily Cribrilinoidea. The subgenus Juxtacribrilina is elevated to genus rank. Inferusia is regarded as a subjective synonym of Parafigularia. Parafigularia darwini Moyano, 2011 is synonymized with I. taylori Kuklinski and Barnes, 2009, resulting in Parafigularia taylori n. comb. Morphological data suggest that these genera comprise different lineages, and a discussion on the disparities among cribrilinid (sensu lato) spinocysts is provided. UUID: http://zoobank.org/215957d3-064b-47e2-9090-d0309f6c9cd8


1996 ◽  
Vol 70 (2) ◽  
pp. 230-235 ◽  
Author(s):  
Jacques Le Renard ◽  
Bruno Sabelli ◽  
Marco Taviani

The record of the fossil representatives of the family Juliidae is updated. The new genus Candinia is proposed, in the subfamily Juliinae, for two fossil species somewhat intermediate between Julia and Berthelinia. The new species Candinia pliocaenica is recorded from the lower Pliocene shallow marine deposits near Siena (Tuscany, Italy). This is the first record of Sacoglossa in the Mediterranean Basin. Based on the very specialized life habits of the Juliidae, it is suggested that subtropical Caulerpa algal prairies inhabited the Mediterranean during the early Pliocene, likely becoming extinct in this basin because of the mid-Pliocene climatic deterioration.


2020 ◽  
Vol 25 (10) ◽  
pp. 1754-1764
Author(s):  
Andrés O. Porta ◽  
Daniel N. Proud ◽  
Peter Michalik ◽  
Fabio Akashi Hernandes

A protonymph of the snout mite genus Odontoscirus Thor, 1913, O. cretacico sp. nov., is described and illustrated from Cretaceous amber of Myanmar is described and illustrated, constituting the earliest fossil species described of the family Bdellidae (ca. 99 Ma). After reexamining the literature and recollected specimens from type localities, we conclude that the following five recent species do not belong to the genus Biscirus and should be transferred to Odontoscirus: O. anomalicornis (Berlese 1916) comb. nov., O. symmetricus (Kramer 1898) comb. nov., O. uncinatus (Kramer 1898) comb. nov., O. norvegicus (Thor 1905) comb. nov., and O. insularis (Willmann 1939) comb. nov. The implications of the fossil record of the family is discussed.


2019 ◽  
Vol 187 (2) ◽  
pp. 378-412 ◽  
Author(s):  
Fabiana Criste Massariol ◽  
Daniela Maeda Takiya ◽  
Frederico Falcão Salles

AbstractOligoneuriidae is a Pantropical family of Ephemeroptera, with 68 species described in 12 genera. Three subfamilies are recognized: Chromarcyinae, with a single species from East Asia; Colocrurinae, with two fossil species from Brazil; and Oligoneuriinae, with the remaining species distributed in the Neotropical, Nearctic, Afrotropical and Palaearctic regions. Phylogenetic and biogeographical analyses were performed for the family based on 2762 characters [73 morphological and 2689 molecular (COI, 16S, 18S and 28S)]. Four major groups were recovered in all analyses (parsimony, maximum likelihood and Bayesian inference), and they were assigned to tribal level, namely Oligoneuriini, Homoeoneuriini trib. nov., Oligoneuriellini trib. nov. and Elassoneuriini trib. nov. In addition, Yawari and Madeconeuria were elevated to genus level. According to Statistical Dispersal-Vicariance (S-DIVA), Dispersal Extinction Cladogenesis (DEC) and divergence time estimation analyses, Oligoneuriidae originated ~150 Mya in the Gondwanan supercontinent, but was probably restricted to the currently delimited Neotropical region. The initial divergence of Oligoneuriidae involved a range expansion to Oriental and Afrotropical areas, sometime between 150 and 118 Mya. At ~118 Mya, the family started its diversification, reaching the Nearctic through dispersal from the Neotropical region and the Palaearctic and Madagascar from the Afrotropical region.


1992 ◽  
Vol 6 ◽  
pp. 107-107
Author(s):  
Timothy J. Gaudin ◽  
William D. Turnbull

The mammalian order Xenarthra (including the living Neotropical armadillos, anteaters, and tree sloths) has figured importantly in recent hypotheses of interordinal relationships among eutherian mammals. It has been suggested that the group shares a common ancestry both with the extant Old World order Pholidota (i.e. the pangolins or scaly-anteaters) and the extinct North American group Palaeanodonta. Furthermore, these three groups have been linked together into a monophyletic Cohort Edentata, which has been hypothesized to represent the sister-group to all other eutherians. This placement of edentates relative to the remainder of Eutheria has been supported in part by a purported difference in the morphology of the stapes in the two groups- edentates possessing a primitive, imperforate/columelliform morphology, other placentals a derived, perforate/stirrup-shaped morphology.A recent study of stapedial morphology among mammals by Novacek and Wyss (1986) suggests that within the Xenarthra itself a perforate stapes is found among armadillos, but that the pilosa in particular (the clade including anteaters and sloths) and the order as a whole are characterized primitively by an imperforate stapes. Our studies of the xenarthran ear region (Patterson et al., in press) have uncovered new ontogenetic and paleontological evidence which contradict the findings of Novacek and Wyss. Among adults of the two extant tree sloth genera, the stapes lacks a stapedial foramen. However, in both genera, this adult imperforate morphology is derived from a perforated juvenile stapes. Novacek and Wyss ignored fossil species in their consideration of the xenarthran stapes. It has long been known that extinct ground sloths of the family Mylodontidae possessed a large stapedial foramen. Unfortunately, until now no stapes were known from the remaining ground sloth families, the Megatheriidae and the Megalonychidae. We have uncovered a complete left stapes of an early Miocene megatheriid ground sloth Eucholoeops ingens. This stapes possesses a well-developed stapedial foramen. We believe that this new paleontological evidence, combined with our information on the ontogeny of the stapes in the living genera, clearly indicates that a perforate stapes is primitive for sloths. Moreover, when we plot distributions of stapedial morphologies of both living and fossil edentates onto a phylogeny of the Edentata, we can demonstrate that the a large stapedial foramen is primitive for the Xenarthra as a whole, and probably for the entire Cohort Edentata. Such a distribution makes it unlikely that stapedial morphology can be used to separate edentates from other eutherian mammals.


2020 ◽  
Vol 94 (4) ◽  
pp. 696-715 ◽  
Author(s):  
Mateusz Zmudzinski

AbstractThe fossil record of the family Camerobiidae has been represented by only one species, Neophyllobius succineus Bolland and Magowski, 1990, described from Eocene Baltic amber. These prostigmatan mites are distinguishable by their distinctly long and slender stilt-like legs, and they are associated with aboveground vegetation where they hunt for other small invertebrates. This paper enhances the knowledge of fossil stilt-legged mites. Two new fossil species, N. electrus new species and N. glaesus new species, are described from samples of Baltic amber, and remarks on their morphology and taphonomy are provided. The discovery is complemented with a discussion on morphological singularities (the shape of the prodorsum, the location of setae h1 and h2 in living specimens, and lengths of genual setae), an anomaly of hypertrophied seta (found in the N. glaesus holotype), and some biogeographical issues.UUID: http://zoobank.org/d1602384-ae4f-4f90-b4a1-6cdedd77c9e1


2001 ◽  
Vol 32 (2) ◽  
pp. 191-194 ◽  
Author(s):  
Jens-Wilhelm Janzen ◽  
Norman F. Johnson ◽  
Luciana Musetti

AbstractThe family Peradeniidae (Hymenoptera: Proctotrupoidea) is represented by two rare extant species from southeastern Australia (Australian Capital Territory, Victoria, Tasmania). A new species, Peradenia galerita sp. n., is described from Eocene Baltic amber. The fossil species is very similar to the living Perndenia, but has the short metasomatic petiole typical of most Proctotrupoidea. The subfamily classification of Heloridae proposed by Rasnitsyn and the status of Peradeniidae are briefly reviewed. The subfamily Mesohelorinae Rasnitsyn, 1990 is a junior synonym of Protohelorinae Rasnitsyn, 1980 (syn. n.).


2016 ◽  
Vol 56 (2) ◽  
pp. 223-245 ◽  
Author(s):  
Damián Andrés Fernández ◽  
Patricio Emmanuel Santamarina ◽  
María Cristina Tellería ◽  
Luis Palazzesi ◽  
Viviana Dora Barreda

Abstract Nothofagaceae (southern beeches) are a relatively small flowering plant family of trees confined to the Southern Hemisphere. The fossil record of the family is abundant and it has been widely used as a test case for the classic hypothesis that Antarctica, Patagonia, Australia and New Zealand were once joined together. Although the phylogenetic relationships in Nothofagus appear to be well supported, the evolution of some pollen morphological traits remains elusive, largely because of the lack of ultrastructural analyses. Here we describe the pollen morphology of all extant South American species of Nothofagus, using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and light microscopy (LM), and reconstruct ancestral character states using a well-supported phylogenetic tree of the family. Our results indicate that the main differences between pollen of subgenera Fuscospora (pollen type fusca a) and Nothofagus (pollen type fusca b) are related to the size of microspines (distinguishable or not in optical section), and the thickening of colpi margins (thickened inwards, or thickened both inwards and outwards). In particular, Nothofagus alessandrii, the only extant South American species of subgenus Fuscospora, presents distinctive pollen features that have not been observed in any other species of the genus (i.e. a large granular infratectum and spongy apertural endexine). Species of subgenus Lophozonia are characterized by having the largest pollen grains, with polygonal outline in polar view, microspines distinguishable in optical section, long and non-thickened colpi, and a thin endexine. The reconstruction of character states for the node corresponding to the common ancestor to genus Nothofagus leads us to conclude that the ancestral form of Nothofagaceae should have had: equatorial diameter < 40 μm, circular outline in polar view, microspines distinguishable in optical section, short colpi thickened inwards, and a thin endexine. These features are fully consistent with those present in Nothofagidites senectus Dettmann & Playford, the oldest fossil species of Nothofagaceae recorded in Campanian-Maastrichtian sediments of Gondwana.


2018 ◽  
Vol 1 (1) ◽  
pp. 47 ◽  
Author(s):  
RYSZARD SZADZIEWSKI ◽  
ELŻBIETA SONTAG

The family Corethrellidae, called frog-biting midges, with the single genus Corethrella Coquillett, 1902, is a small group of dipterans including 107 extant species (Borkent, 2017). Females of most species are haematophagous and feed on males of frogs and toads locating them by their calls (Borkent, 2008). Extant frog-biting midges have a pantropical distribution, absent in Europe, north Africa, middle and northern Asia (Giłka & Szadziewski, 2009). The genus during its phylogenetic history dated back to Lower Cretaceous (125–129 Ma) had a broader geographical distribution, and during Eocene was present in Europe. Till now nine fossil species have been described from Lower Cretaceous Lebanese amber (1), mid-Cretaceous Burmese amber (1), Eocene Baltic amber (5) and Miocene Dominican amber (2) (a complete annotated list is provided below). 


2020 ◽  
Vol 3 (3) ◽  
pp. 269-283
Author(s):  
WESLEY D. COLOMBO ◽  
EVGENY E. PERKOVSKY ◽  
CELSO O. AZEVEDO

The flat wasps, Bethylidae, are cosmopolitan and one of the most diverse families of Chrysidoidea. Bethylidae have 2,920 described extant species and almost 90 fossil species. The oldest geological record of the family is the Lower Cretaceous, from Lebanese and Spanish ambers and Transbaikalian rock fossils. Here we describe and illustrate one new fossil subfamily of Bethylidae: †Elektroepyrinae subfam. nov. represented by †Elektroepyris Perrichot & Nel from the lowermost Eocene Oise amber (France), which was cladistically assessed against all other eight subfamilies of Bethylidae. The new taxon is easily distinguished from other subfamilies by the forewing venation with the third abscissa of Cu present. Phylogenetic analyses support the monophyly of all subfamilies of Bethylidae, with a matrix with 69 morphological characters and 22 terminal taxa from where †Elektroepyrinae subfam. nov. emerged as independent lineage from all other subfamilies.


Sign in / Sign up

Export Citation Format

Share Document