The Polar Code and Telemedicine

2021 ◽  
Vol 12 (1) ◽  
pp. 349-365
Author(s):  
Johnny Grøneng Aase ◽  
Henrik Hyndøy ◽  
Agnar Tveten ◽  
Ingrid Hjulstad Johansen ◽  
Hege Imsen ◽  
...  

One result of a warmer global climate is increased maritime activity in the Arctic. Areas that used to be covered by ice and snow are now accessible for the scientific community and commercial users. The Norwegian government has chosen tourism as a pillar of the economy of Svalbard and facilitates the development of the tourism industry. Aase and Jabour have shown that tourist vessels sail as far north as 82° N, beyond the range of geostationary satellites. The Polar Code states that appropriate communication equipment to enable telemedical assistance in polar areas shall be provided. This paper describes a series of functional telemedicine tests carried out on board the Norwegian Coast Guard vessel NoCGV Svalbard during her transit between Svalbard and the Norwegian mainland in September 2019. Communication was established between the vessel and Haukeland University Hospital in Bergen, Norway, using the new Iridium NEXT constellation of communication satellites. Our tests show that medical services that require low bandwidths work.

2020 ◽  
Vol 13 (4) ◽  
pp. 210-224
Author(s):  
Stephen Verderber ◽  
Jake Pauls Wolf ◽  
Erik Skouris

Background: Circumpolar nations are experiencing unprecedented environmental and public health policy challenges due to global climate change, exploitation of nonrenewable natural resources, the endangerment of myriad wildlife species, and growing sovereignty disputes. In a call to action, the Arctic states’ health ministers recently signed a declaration identifying shared priorities for mutual international cooperation. Among agreed-upon collaborations, an enhancement of intercultural understanding and promotion of culturally appropriate healthcare delivery systems is to be of high priority going forward. Purpose and Aim: In far north Canada, health policies perpetuated for generations upon indigenous communities have, traditionally, often had adverse consequences for the medically underserved inhabitants of these communities. This discussion addresses the cultural disconnect between the colonial era and current indigenous, decolonialist health and healing design strategies. Method and Result: In response, two architectural design case studies are presented that synthesize ecological site planning precepts with salutogenic architectural design attributes—a behavioral health and substance abuse residential treatment center and three elderhousing prototypes for construction in Canada’s Northwest Territories. Conclusion: This conceptual synthesis is practicable, transferable, and adaptable to varied, extreme climatic conditions, as reflective of best practices in the delivery of healthcare facilities that express a synthesis of ecohumanist and salutogenic values and methodologies. The discussion concludes with a call for empathic, evidence-based collaboration and research that further examines the blending together of prefabricated off-site construction with on-site construction approaches.


Author(s):  
Jino Peechanatt ◽  
Bjarte O. Kvamme ◽  
Ove T. Gudmestad ◽  
Yaaseen A. Amith

In recent years, there has been unprecedented interest shown in the Arctic region by the industry, as it has become increasingly accessible for oil and gas exploration, shipping, and tourism. The decrease in ice extent in the Arctic has renewed the interest in the Northern Sea route, necessitating further research to evaluate the adequacy of the equipment and appliances used on vessels traversing in polar waters. The introduction of the Polar Code by the International Maritime Organization (IMO) attempts to mitigate some of the risks endangering the vessels in Polar waters. The Polar Code is scheduled to take effect on 01.01.2017, and applies to all vessels traversing in polar waters. One of the requirements in the Polar Code is that means shall be provided to remove or prevent accretion of snow and/or ice from escape routes, embarkation areas and access points. Even though, prior to the formulation of Polar Code, the requirement for de-icing the deck surfaces on vessels already exists, the suitability of the equipment currently in use is debatable. Large amounts of energy is required to maintain an ice-free surface, which is not desirable economically or environmentally, due to the substantial increase in fuel consumption. In this study, a heated deck element manufactured by GMC Maritime AS is subjected to cross flow wind of 5 m/s, 10 m/s and 15 m/s at various sub-zero temperatures in GMC Maritime AS’s climate laboratory in Stavanger, Norway. The deck element is rated to 1400 W / m2, and is one of the designs provided by GMC Maritime AS. The power consumption of the deck element is measured and compared to theoretical heat loss calculations. Large discrepancies between the measured power consumption and the theoretical heat loss were discovered, indicating the need for further studies on the matter. As part of SARex Spitzbergen 2016, a search and rescue exercise conducted off North Spitzbergen, heated deck elements on board the Norwegian Coast Guard Vessel KV Svalbard were studied and are discussed in this paper. The heating elements in the deck elements were designed to specifications at the time of commissioning, but proves insufficient when the vessel is in transit or exposed to slight winds, allowing snow and ice to accumulate on the surface. Finally, suggestions for a more energy efficient design of deck elements are made, as the current designs are found to have potential for improvement, especially due to the lack of insulation between the deck elements and the hull of the vessel.


2018 ◽  
Vol 35 (4) ◽  
pp. 110-113
Author(s):  
V. A. Tupchienko ◽  
H. G. Imanova

The article deals with the problem of the development of the domestic nuclear icebreaker fleet in the context of the implementation of nuclear logistics in the Arctic. The paper analyzes the key achievements of the Russian nuclear industry, highlights the key areas of development of the nuclear sector in the Far North, and identifies aspects of the development of mechanisms to ensure access to energy on the basis of floating nuclear power units. It is found that Russia is currently a leader in the implementation of the nuclear aspect of foreign policy and in providing energy to the Arctic region.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
David Docquier ◽  
Torben Koenigk

AbstractArctic sea ice has been retreating at an accelerating pace over the past decades. Model projections show that the Arctic Ocean could be almost ice free in summer by the middle of this century. However, the uncertainties related to these projections are relatively large. Here we use 33 global climate models from the Coupled Model Intercomparison Project 6 (CMIP6) and select models that best capture the observed Arctic sea-ice area and volume and northward ocean heat transport to refine model projections of Arctic sea ice. This model selection leads to lower Arctic sea-ice area and volume relative to the multi-model mean without model selection and summer ice-free conditions could occur as early as around 2035. These results highlight a potential underestimation of future Arctic sea-ice loss when including all CMIP6 models.


AMBIO ◽  
2021 ◽  
Author(s):  
Henry P. Huntington ◽  
Andrey Zagorsky ◽  
Bjørn P. Kaltenborn ◽  
Hyoung Chul Shin ◽  
Jackie Dawson ◽  
...  

AbstractThe Arctic Ocean is undergoing rapid change: sea ice is being lost, waters are warming, coastlines are eroding, species are moving into new areas, and more. This paper explores the many ways that a changing Arctic Ocean affects societies in the Arctic and around the world. In the Arctic, Indigenous Peoples are again seeing their food security threatened and cultural continuity in danger of disruption. Resource development is increasing as is interest in tourism and possibilities for trans-Arctic maritime trade, creating new opportunities and also new stresses. Beyond the Arctic, changes in sea ice affect mid-latitude weather, and Arctic economic opportunities may re-shape commodities and transportation markets. Rising interest in the Arctic is also raising geopolitical tensions about the region. What happens next depends in large part on the choices made within and beyond the Arctic concerning global climate change and industrial policies and Arctic ecosystems and cultures.


Author(s):  
Mark Longrée ◽  
Sven Hoog

In turn of the global warming and driven by the constant need for resources an increasing number of commercial and scientific activities conquer the Arctic in order to benefit from almost untouched resources like oil and gas but also from the overwhelming nature. These activities are accompanied by a steadily increasing number of vessels transporting goods but also operating personnel, scientists or tourists. Especially the number of tourists visiting the Arctic can reach far more than 1000 per vessel, resulting in growing headaches for the responsible safety and security authorities in the Arctic surrounding countries. Up to now no suitable Escape, Evacuation and Rescue (EER) concept is in place to cope with these challenges when it comes to hazardous situations. In this context IMPaC ([1]) developed a new and appropriate EER concept for the Arctic, exceeding the currently dominant small and isolated settlements along the coastlines in Denmark (Greenland), Norway, Russia, Canada and the US. One question seems to be central: Is there any requirement and benefit beyond the currently used small rescue station? Yes, we strongly believe that there is a growing demand for suitable infrastructure coming from various industries. Beyond rescue objectives there is a demand for people working and living in this area all year long, for a few days, weeks or months using these settlements for their specific needs. This led us to the idea of the provision of a common-use infrastructure for multiple industries. The commonly used infrastructure maximizes the use of the remote and very expensive infrastructure and minimizes the impact on the environment in this part of the world. Potential users of this infrastructure would be: • Oil & Gas Industry, driven by the increased world energy demand • Marine Transport & Tourism Industry, driven by declined arctic ice and new sea routes via the Arctic sea • Fishery Industry • Scientific community Any EER concept for the Arctic has to cope with several specific environmental and spatial challenges as addressed by the EU joint research project ACCESS ([2]), where IMPaC participates. The paper introduces the new EER concept and focuses especially on its beneficial, efficient and safe operability in the Arctic recording an increasing number of commercial and scientific activities.


Antiquity ◽  
2015 ◽  
Vol 89 (345) ◽  
pp. 740-742 ◽  
Author(s):  
Herbert Maschner

This review considers three books on the archaeology of territories situated around the Bering Sea—a region often referred to as Beringia, adopting the term created for the Late Pleistocene landscape that extended from north-east Asia, across the Bering Land Bridge, to approximately the Yukon Territory of Canada. This region is critical to the archaeology of the Arctic for two fundamental reasons. First, it is the gateway to the Americas, and was certainly the route by which the territory was colonised at the end of the last glaciation. Second, it is the place where the entire Aleut-Eskimo (Unangan, Yupik, Alutiiq, Inupiat and Inuit) phenomenon began, and every coastal culture from the far north Pacific, to Chukotka, to north Alaska, and to arctic Canada and Greenland, has its foundation in the cultural developments that occurred around the Bering Sea.


2011 ◽  
Vol 8 (4) ◽  
pp. 399 ◽  
Author(s):  
Lutz Ahrens ◽  
Mahiba Shoeib ◽  
Sabino Del Vento ◽  
Garry Codling ◽  
Crispin Halsall

Environmental contextPerfluoroalkyl compounds are of rising environmental concern because of their ubiquitous distribution in remote regions like the Arctic. The present study quantifies these contaminants in the gas and particle phases of the Canadian Arctic atmosphere. The results demonstrate the important role played by gas–particle partitioning in the transport and fate of perfluoroalkyl compounds in the atmosphere. AbstractPolyfluoroalkyl compounds (PFCs) were determined in high-volume air samples during a ship cruise onboard the Canadian Coast Guard Ship Amundsen crossing the Labrador Sea, Hudson Bay and the Beaufort Sea of the Canadian Arctic. Five PFC classes (i.e. perfluoroalkyl carboxylates (PFCAs), polyfluoroalkyl sulfonates (PFSAs), fluorotelomer alcohols (FTOHs), fluorinated sulfonamides (FOSAs), and sulfonamidoethanols (FOSEs)) were analysed separately in the gas phase collected on PUF/XAD-2 sandwiches and in the particle phase on glass-fibre filters (GFFs). The method performance of sampling, extraction and instrumental analysis were compared between two research groups. The FTOHs were the dominant PFCs in the gas phase (20–138 pg m–3), followed by the FOSEs (0.4–23 pg m–3) and FOSAs (0.5–4.7 pg m–3). The PFCAs could only be quantified in the particle phase with low levels (<0.04–0.18 pg m–3). In the particle phase, the dominant PFC class was the FOSEs (0.3–8.6 pg m–3). The particle-associated fraction followed the general trend of: FOSEs (~25 %) > FOSAs (~9 %) > FTOHs (~1 %). Significant positive correlation between ∑FOSA concentrations in the gas phase and ambient air temperature indicate that cold Arctic surfaces, such as the sea-ice snowpack and surface seawater could be influencing FOSAs in the atmosphere.


2021 ◽  
Vol 1 (1) ◽  
pp. 67-77
Author(s):  
A. V. Kirgizov-Barskii

Today due to global climate change the Northern Sea Route is being formed along the northern coast of Russia as a new international maritime passage in the Arctic. Due to the rapid increase in the interest of regional and non-Arctic states, the scientific community and business to this transportation route, there is a need to study the prospects for cooperation between Russia and other countries on the development of the Northern Sea Route. The paper provides a detailed analysis of the interests of external players in the NSR area, taking into account the latest changes and events, while the author uses swot-analysis and a comparative analytical approach to conduct the study. The results of the study have shown that cooperation with some Arctic countries on the development of the NSR could bring mutual benefits: Canada and Russia would exchange experience on the development of similar sea routes, and Norway and Iceland would receive advantages as hubs on new routes. Non-regional countries, such as China, South Korea, Japan, Singapore and India, are interested in the NSR. For them, the Northern Sea Route is potentially shorter and safer compared to traditional routes, and it also allows to participate in projects located near its water area in science, energy and transport sectors. In turn, the participation of foreign partners is important for Russia, since it is usually accompanied by the active use of the route, the creation of large projects throughout its entire length, the attraction of serious funds, modern technologies and knowledge to the Arctic zone of the country.


Sign in / Sign up

Export Citation Format

Share Document