scholarly journals Carboxymethyllysine, an Advanced Glycation End-Product, Promotes the Invasion and Migration of Lung Cancer A549 Cells

2017 ◽  
Vol 6 (5) ◽  
pp. 149
Author(s):  
Te-chun Hsia
Author(s):  
Dong Yang ◽  
Jian-Jun Wang ◽  
Jin-Song Li ◽  
Qian-Yu Xu

Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancer cases. Absence of miR-103 has recently been identified to be associated with metastatic capacity of primary lung tumors. However, the exact role of miR-103 in NSCLC and the molecular mechanism are unclear. In the present study, we showed that miR-103 expression was reduced in NSCLC tissues and cells. miR-103 expression was negatively correlated with tumor size and stage. The overall survival was longer in patients with higher miR-103 level than in those with lower miR-103 expression. miR-103 inhibited cell proliferation in A549 cells, decreased tumor weight and volume, and prolonged survival of tumor-implanted nude mice. miR-103 increased apoptotic cell death in A549 cells. Furthermore, miR-103 decreased the invasion and migration abilities in A549 cells, as evidenced by Transwell and wound healing results. Downregulation of miR-103 significantly reduced the level of programmed cell death 10 (PDCD10). We found a significant decrease in the relative luciferase activity of the reporter gene in A549 cells cotransfected with the miR-103 mimic and pGL3-PDCD10 WT 3′-UTR, but not pGL3-PDCD10 mut 3′-UTR. We showed that overexpression of PDCD10 significantly inhibited miR-103-induced inhibition of cell proliferation, increased apoptosis, and decreased invasion and migration in A549 cells. Moreover, we found that PDCD10 expression was increased in NSCLC tissues and cells. PDCD10 expression was positively correlated with tumor size and stage. Overexpression of PDCD10 increased cell proliferation and inhibited apoptosis in A549 cells. The data demonstrated that dysregulation of the miR-103/PDCD10 signal may be a novel therapeutic target for the treatment of NSCLC.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Lemeng Zhang ◽  
Huifang Yi ◽  
Jianhua Chen ◽  
Haitao Li ◽  
Yongzhong Luo ◽  
...  

Introduction. The biological functions of neutrophil extracellular traps (NETs) in tumorigenesis have drawn an increasing amount of attention. This study explored the relationship between NETs and the inflammatory microenvironment in lung cancer cell invasion and metastasis. Methods. NETs were quantified using myeloperoxidase (MPO–DNA) and immunofluorescence staining. Cytokine levels were measured using ELISA kits. THP-1 and A549 cells were used for in vitro experiments. Transwell and Matrigel assays were used to assess the invasion and migration abilities of the cells. Results. Neutrophil infiltration and NET formation were observed in the lung cancer tissues. Compared with healthy controls, the level of MPO–DNA complexes in lung cancer patients increased remarkably and was positively correlated with peripheral blood neutrophil counts, smoking status, and poor prognosis. Increased circulating NET levels were also positively correlated with the levels of inflammatory cytokines, including IL-1β, IL-6, IL-18, and TNF-α. Neutrophils isolated from patients with lung cancer are more prone to NET release. NETs can promote the invasion and migration ability of THP-1 and A549 cell in coculture systems, while pretreatment with NET inhibitors can effectively reduce NET-induced invasion and metastasis. The ability of NETs to promote invasion and metastasis is partly dependent on macrophages. Conclusion. Taken together, our study demonstrated that NETs facilitate A549 cell invasion and migration in a macrophage-maintained inflammatory microenvironment.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Jinghong Meng ◽  
Leyuan Liu ◽  
Dongchang Wang ◽  
Zhenfeng Yan ◽  
Gang Chen

Abstract Hydrogen gas (H2) has been identified to play an anti-tumor role in several kinds of cancers, but the molecular mechanisms remain largely unknown. In our previous study, our project group found that H2 could decrease the expression of CD47 in lung cancer A549 cells via the next-generation sequencing, indicating that CD47 might be involved in H2-mediated lung cancer repression. Therefore, the present study aimed to explore the effects of CD47 on H2-induced lung cancer repression. Western blotting and real-time PCR (RT-PCR) assays were used to detect the levels of proteins and mRNAs, respectively. Cell proliferation, invasion, migration and apoptosis were detected by using the cell counting kit-8 (CCK-8), Transwell chambers, wound healing and flow cytometry assays, respectively. The results showed that H2 treatment caused decreases in the expression levels of CD47 and cell division control protein 42 (CDC42) in a dose-dependent manner. Up-regulation of CD47 abolished H2 roles in promoting lung cancer cell apoptosis and repressing cell growth, invasion and migration in both A549 and H1975 cell lines. However, knockdown of CD47 enhanced H2 role in lung cancer inhibition. Moreover, we also observed that H2 treatment induced obvious inhibitions in the expression levels of CDC42 and CD47 in mice tumor tissues, as well as reinforced macrophage-mediated phagocytosis in A549 and H1975 cells. In conclusion, the current study reveals that H2 inhibits the progression of lung cancer via down-regulating CD47, which might be a potent method for lung cancer treatment.


2020 ◽  
Vol 12 (4) ◽  
pp. 1552-1560
Author(s):  
Yubo Yan ◽  
Lei Yao ◽  
Haobo Sun ◽  
Sainan Pang ◽  
Xianglong Kong ◽  
...  

2021 ◽  
pp. 1-9
Author(s):  
Huan Guo ◽  
Baozhen Zeng ◽  
Liqiong Wang ◽  
Chunlei Ge ◽  
Xianglin Zuo ◽  
...  

BACKGROUND: The incidence of lung cancer in Yunnan area ranks firstly in the world and underlying molecular mechanisms of lung cancer in Yunnan region are still unclear. We screened a novel potential oncogene CYP2S1 used mRNA microassay and bioinformation database. The function of CYP2S1 in lung cancer has not been reported. OBJECTIVE: To investigate the functions of CYP2S1 in lung cancer. METHODS: Immunohistochemistry and Real-time PCR were used to verify the expression of CYP2S1. Colony formation and Transwell assays were used to determine cell proliferation, invasion and migration. Xenograft assays were used to detected cell growth in vivo. RESULTS: CYP2S1 is significantly up-regulated in lung cancer tissues and cells. Knockdown CYP2S1 in lung cancer cells resulted in decrease cell proliferation, invasion and migration in vitro. Animal experiments showed downregulation of CYP2S1 inhibited lung cancer cell growth in vivo. GSEA analysis suggested that CYP2S1 played functions by regulating E2F targets and G2M checkpoint pathway which involved in cell cycle. Kaplan-Meier analysis indicated that patients with high CYP2S1 had markedly shorter event overall survival (OS) time. CONCLUSIONS: Our data demonstrate that CYP2S1 exerts tumor suppressor function in lung cancer. The high expression of CYP2S1 is an unfavorable prognostic marker for patient survival.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hua Luo ◽  
Yukun Zhang ◽  
Guangmei Qin ◽  
Bing Jiang ◽  
Lili Miao

Abstract Background MCM3AP-AS1 is a recently characterized lncRNA playing an oncogenic role in several cancers. However, its role in lung cancer remains unknown. Here, we aimed to explore the functions of MCM3AP-AS1 in small cell lung cancer (SCLC) and the possible underlying mechanisms. Methods MCM3AP-AS1 and ROCK1 levels in SCLC patients were analyzed by qPCR. RNA pull-down and luciferase assays were performed to analyze the interaction between MCM3AP-AS1 and miR-148a. ROCK1 mRNA and protein levels were detected by qPCR and Western blot, respectively. Cell invasion and migration were analyzed by Transwell assays. Results MCM3AP-AS1 was upregulated in patients with SCLC, and a high MCM3AP-AS1 level was accompanied by a low survival rate. The binding of MCM3AP-AS1 to miR-148a predicted by bioinformatics analysis was verified by RNA pull-down and luciferase assays. However, MCM3AP-AS1 and miR-148a did not affect each other’s expression. ROCK1 was upregulated in SCLC tissues and positively correlated with MCM3AP-AS1. In SCLC cells, MCM3AP-AS1 overexpression increased ROCK1 and promoted cancer cell invasion and migration, while miR-148a overexpression showed the opposite effects and attenuated the effects of MCM3AP-AS1 overexpression on ROCK1 expression and cell behaviors. Conclusions MCM3AP-AS1 sponges miR-148a, thereby increasing SCLC cell invasion and migration via upregulating ROCK1 expression.


Sign in / Sign up

Export Citation Format

Share Document