scholarly journals Advances in Studies on Horizontal Gene Transfer Promoting the Evolution of Resistance Genes of Periodontal Pathogens

2021 ◽  
Vol 9 (5) ◽  
pp. 255
Author(s):  
Li Jianbin ◽  
Yu Xijiao
mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
María Getino ◽  
David J. Sanabria-Ríos ◽  
Raúl Fernández-López ◽  
Javier Campos-Gómez ◽  
José M. Sánchez-López ◽  
...  

ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. IMPORTANCE Diseases caused by multidrug-resistant bacteria are taking an important toll with respect to human morbidity and mortality. The most relevant antibiotic resistance genes come to human pathogens carried by plasmids, mainly using conjugation as a transmission mechanism. Here, we identified and characterized a series of compounds that were active against several plasmid groups of clinical relevance, in a wide variety of bacterial hosts. These inhibitors might be used for fighting antibiotic-resistance dissemination by inhibiting conjugation. Potential inhibitors could be used in specific settings (e.g., farm, fish factory, or even clinical settings) to investigate their effect in the eradication of undesired resistances.


2019 ◽  
Author(s):  
Yiqin Deng ◽  
Haidong Xu ◽  
Youlu Su ◽  
Songlin Liu ◽  
Liwen Xu ◽  
...  

Abstract Background Horizontal gene transfer (HGT), which is affected by environmental pollution and climate change, promotes genetic communication, changing bacterial pathogenicity and drug resistance. However, few studies have been conducted on the effect of HGT on the high pathogenicity and drug resistance of the opportunistic pathogen Vibrio harveyi .Results V. harveyi 345 that was multidrug resistant and infected Epinephelus oanceolutus was isolated from a diseased organism in Shenzhen, Southern China, an important and contaminated aquaculture area. Analysis of the entire genome sequence predicted 5,678 genes including 487 virulence genes contributing to bacterial pathogenesis and 25 antibiotic-resistance genes (ARGs) contributing to antimicrobial resistance. Five ARGs ( tetm , tetb , qnrs , dfra17 , and sul2 ) and one virulence gene (CU052_28670) on the pAQU-type plasmid p345-185, provided direct evidence for HGT. Comparative genome analysis of 31 V. harveyi strains indicated that 217 genes and 7 gene families, including a class C beta-lactamase gene, a virulence-associated protein D gene, and an OmpA family protein gene were specific to strain V. harveyi 345. These genes could contribute to HGT or be horizontally transferred from other bacteria to enhance the virulence or antibiotic resistance of 345. Mobile genetic elements in 71 genomic islands encoding virulence factors for three type III secretion proteins and 13 type VI secretion system proteins, and two incomplete prophage sequences were detected that could be HGT transfer tools. Evaluation of the complete genome of V. harveyi 345 and comparative genomics indicated genomic exchange, especially exchange of pathogenic genes and drug-resistance genes by HGT contributing to pathogenicity and drug resistance. Climate change and continued environmental deterioration are expected to accelerate the HGT of V. harveyi , increasing its pathogenicity and drug resistance.Conclusion This study provides timely information for further analysis of V. harveyi pathogenesis and antimicrobial resistance and developing pollution control measurements for coastal areas.


mSphere ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Marlène Maeusli ◽  
Bosul Lee ◽  
Sarah Miller ◽  
Zeferino Reyna ◽  
Peggy Lu ◽  
...  

ABSTRACT Agricultural use of antibiotics is recognized by the U.S. Centers for Disease Control and Prevention as a major contributor to antibiotic-resistant infections. While most One Health attention has been on the potential for antibiotic resistance transmission from livestock and contaminated meat products to people, plant foods are fundamental to the food chain for meat eaters and vegetarians alike. We hypothesized that environmental bacteria that colonize plant foods may serve as platforms for the persistence of antibiotic-resistant bacteria and for horizontal gene transfer of antibiotic-resistant genes. Donor Acinetobacter baylyi and recipient Escherichia coli were cocultured in vitro, in planta on lettuce, and in vivo in BALB/c mice. We showed that nonpathogenic, environmental A. baylyi is capable of transferring plasmids conferring antibiotic resistance to E. coli clinical isolates on lettuce leaf discs. Furthermore, transformant E. coli from the in planta assay could then colonize the mouse gut microbiome. The target antibiotic resistance plasmid was identified in mouse feces up to 5 days postinfection. We specifically identified in vivo transfer of the plasmid to resident Klebsiella pneumoniae in the mouse gut. Our findings highlight the potential for environmental bacteria exposed to antibiotics to transmit resistance genes to mammalian pathogens during ingestion of leafy greens. IMPORTANCE Previous efforts have correlated antibiotic-fed livestock and meat products with respective antibiotic resistance genes, but virtually no research has been conducted on the transmission of antibiotic resistance from plant foods to the mammalian gut (C. S. Hölzel, J. L. Tetens, and K. Schwaiger, Pathog Dis 15:671–688, 2018, https://doi.org/10.1089/fpd.2018.2501; C. M. Liu et al., mBio 9:e00470-19, 2018, https://doi.org/10.1128/mBio.00470-18; B. Spellberg et al., NAM Perspectives, 2016, https://doi.org/10.31478/201606d; J. O’Neill, Antimicrobials in agriculture and the environment, 2015; Centers for Disease Control and Prevention, Antibiotic resistance threats in the United States, 2019). Here, we sought to determine if horizontal transmission of antibiotic resistance genes can occur between lettuce and the mammalian gut microbiome, using a mouse model. Furthermore, we have created a new model to study horizontal gene transfer on lettuce leaves using an antibiotic-resistant transformant of A. baylyi (AbzeoR).


2009 ◽  
Vol 30 (10) ◽  
pp. 1015-1018 ◽  
Author(s):  
Marlies J. Mooij ◽  
Ina Willemsen ◽  
Marihe Lobbrecht ◽  
Christina Vandenbroucke-Grauls ◽  
Jan Kluytmans ◽  
...  

Integrons play an important role in the dissemination of resistance genes among bacteria. Nearly 70% of highly resistant gram-negative bacteria isolated at a tertiary care hospital harbored an integron. Epidemiologic analysis suggests that horizontal gene transfer is an important mechanism of resistance spread and has a greater contribution than cross-transmission to levels of resistance in settings where highly resistant gram-negative bacteria are endemic.


1997 ◽  
Vol 83 (S1) ◽  
pp. 42S-51S ◽  
Author(s):  
C.G. Dowson ◽  
V. Barcus ◽  
S. King ◽  
P. Pickerill ◽  
A. Whatmore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document