Application of Molecular Nanoprobes in the Analysis of Differentially Expressed Genes and Prognostic Models of Primary Hepatocellular Carcinoma

2021 ◽  
Vol 17 (6) ◽  
pp. 1020-1033
Author(s):  
Shuang Luo ◽  
Lu Gan ◽  
Yiqun Luo ◽  
Zhikun Zhang ◽  
Lan Li ◽  
...  

Analyzing hub genes related to tumorigenesis based on biological big data has recently become a hotspot in biomedicine. Nanoprobes, nanobodies and theranostic molecules targeting hub genes delivered by nanocarriers have been widely applied in tumor theranostics. Hepatocellular carcinoma (HCC) is one of the most common cancers, with a poor prognosis and high mortality. Identifying hub genes according to the gene expression levels and constructing prognostic signatures related to the onset and outcome of HCC will be of great significance. In this study, the expression profiles of HCC and normal tissue were obtained from the GEO database and analyzed by GEO2R to identify DEGs. GO terms and KEGG pathways were enriched in DAVID software. The STRING database was consulted to find protein–protein interactions between proteins encoded by the DEGs, which were visualized by Cytoscape. Then, overall survival associated with the hub genes was calculated by the Kaplan-Meier plotter online tool, and verification of the results was carried out on TCGA samples and their corresponding clinical information. A total of 603 DEGs were obtained, of which 479 were upregulated and 124 were downregulated. PPI networks including 603 DEGs and 18 clusters were constructed, of which 7 clusters with MCODE score ≥3 and nodes ≥5 were selected. The 5 genes with the highest degrees of connectivity were identified as hub genes, and a prognostic model was constructed. The expression and prognostic potential of this model was validated on TCGA clinical data. In conclusion, a five-gene signature (TOP2A, PCNA, AURKA, CDC20, CCNB2) overexpressed inHCC was identified, and a prognostic model was constructed. This gene signature may act as a prognostic model for HCC and provide potential targets of nanotechnology.

2021 ◽  
Author(s):  
Lianmei Wang ◽  
Jing Meng ◽  
Shasha Qin ◽  
Aihua Liang

Abstract Hepatocellular carcinoma (HCC) is associated with poor 5-year survival. Chronic infection with hepatitis B virus (HBV) contributes to ~50% of HCC cases. Identification of biomarkers is pivotal for the therapy of HBV-related HCC (HBV–HCC). We downloaded gene-expression profiles from Gene expression omnibus (GEO) datasets with HBV-HCC patients and the corresponding controls. Integration of these differentially expressed genes (DEGs) was achieved with the Robustrankaggreg (RRA) method. DEGs functional analyses and pathway analyses was performed using the Gene ontology (GO) database, and the Kyoto encyclopedia of genes and genomes (KEGG) database respectively. Cyclin-dependent kinase 1 (CDK1), Cyclin B1 (CCNB1), Forkhead box M1 (FOXM1), Aurora kinase A (AURKA), Cyclin B2 (CCNB2), Enhancer of zeste homolog 2 (EZH2), Cell division cycle 20 (CDC20), DNA topoisomerase II alpha (TOP2A), BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B), and ZW10 interactor (ZWINT), were identified as the top-ten hub genes. The expression of hub-genes was verified in the liver cancer-riken, JP project from international cancer genome consortium (ICGC-LIRI-JP), the cancer genome atlas (TCGA) HCC cohort, and Human protein profiles dataset. A four-gene prognostic related model based on the expression of ZWINT, EZH2, FOXM1 and CDK1 were established through Cox regression analysis in ICGC-LIRI-JP project, and verified in TCGA-HCC cohort. Furthermore, a nomogram model based on pathology stage, gender and four-genes prognostic model was built to predict the prognosis for HBV–HCC patients. In conclusion, ZWINT, EZH2, FOXM1 and CDK1 play a pivotal role in HBV-HCC, and are potential therapeutic targets of HBV HCC.


2021 ◽  
Author(s):  
Lianmei Wang ◽  
Jing Liu ◽  
Zhong Xian ◽  
Jingzhuo Tian ◽  
Chunying Li ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is associated with poor 5-year survival. Chronic infection with hepatitis B virus (HBV) contributes to ~ 50% of HCC cases. Establishment of a prognostic model is pivotal for clinical therapy of HBV-related HCC (HBV–HCC). We downloaded gene-expression profiles from Gene expression omnibus (GEO) datasets with HBV-HCC patients and the corresponding controls. Integration of these differentially expressed genes (DEGs) was achieved with the Robustrankaggreg (RRA) method. DEGs functional analyses and pathway analyses was performed using the Gene ontology (GO) database, and the Kyoto encyclopedia of genes and genomes (KEGG) database respectively. DNA topoisomerase II alpha (TOP2A), Disks large-associated protein 5 (DLGAP5), RAD51 associated protein 1 (RAD51AP1), ZW10 interactor (ZWINT), BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B), Cyclin B1 (CCNB1), Forkhead box M1 (FOXM1), Cyclin B2 (CCNB2), Aurora kinase A (AURKA), and Cyclin-dependent kinase 1 (CDK1) were identified as the top-ten hub genes. These hub-genes were verified by the Liver cancer-riken, JP project from international cancer genome consortium (ICGC-LIRI-JP) project, The Cancer genome atlas (TCGA) HCC cohort, and Human protein profiles dataset. FOXM1 and CDK1 were found to be prognostic-related molecules for HBV-HCC patients. The expression patterns of FOXM1 and CDK1were consistently in human and mouse. Furthermore, a nomogram model based on histology grade, pathology stage, sex and, expression of FOXM1 and CDK1 was built to predict the prognosis for HBV–HCC patients. The nomogram model could be used to predict the prognosis of HBV-HCC cases.


2021 ◽  
Author(s):  
Biao Song ◽  
Yulin Wang ◽  
Shaocong Mo

Abstract Background: Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) misses the opportunity for surgery because it is not detected early. The molecular mechanism of hepatitis B-related liver cancer needs further understanding, and effective diagnostic and prognostic models are in urgent need. Methods: Expression profiles from the Cancer Genome Atlas (TCGA) Liver Hepatocellular Carcinoma (LIHC), GSE121248, GSE94660 GSE76724 from Gene Expression Omnibus (GEO) database were obtained. Differentially expressed genes (DEGs) between normal and tumor HBV-related HCC samples based on GSE121248 and GSE94660. Gene pairs are generated by comparing the expression levels of every two DEGs. A diagnostic signature of pairs of DEGs was built using cross-validation Lasso and Best Subset Selection regression. Hub genes and significant modules were screened by Cytoscape, and potential drugs were predicted by DGIdb. A prognostic signature was established and xCell and ssGSEA were utilized to reveal the cell composition and cancer hallmarks to get an elucidation for the risk.Results: 457 DEGs were screened. A powerful diagnostic signature of 2 pairs of DEGs was built and validated in TCGA-LIHC and GEO datasets repeatedly with assured performance. 10 Hub genes were found and fostamatinib was predicted to have potential therapeutic effect on HBV-related HCC. A prognostic signature with good efficiency (Log-rank P value<0.05, AUC=93.1%) were established, with stromal score and several hallmarks related to the risk Conclusion: Taken together, the study provided sight into the molecular mechanism as well as a novel strategy for the early diagnosis and prognosis for HBV-related HCC.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ping Yan ◽  
Zuotian Huang ◽  
Tong Mou ◽  
Yunhai Luo ◽  
Yanyao Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common and deadly malignant tumors, with a high rate of recurrence worldwide. This study aimed to investigate the mechanism underlying the progression of HCC and to identify recurrence-related biomarkers. Methods We first analyzed 132 HCC patients with paired tumor and adjacent normal tissue samples from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). The expression profiles and clinical information of 372 HCC patients from The Cancer Genome Atlas (TCGA) database were next analyzed to further validate the DEGs, construct competing endogenous RNA (ceRNA) networks and discover the prognostic genes associated with recurrence. Finally, several recurrence-related genes were evaluated in two external cohorts, consisting of fifty-two and forty-nine HCC patients, respectively. Results With the comprehensive strategies of data mining, two potential interactive ceRNA networks were constructed based on the competitive relationships of the ceRNA hypothesis. The ‘upregulated’ ceRNA network consists of 6 upregulated lncRNAs, 3 downregulated miRNAs and 5 upregulated mRNAs, and the ‘downregulated’ network includes 4 downregulated lncRNAs, 12 upregulated miRNAs and 67 downregulated mRNAs. Survival analysis of the genes in the ceRNA networks demonstrated that 20 mRNAs were significantly associated with recurrence-free survival (RFS). Based on the prognostic mRNAs, a four-gene signature (ADH4, DNASE1L3, HGFAC and MELK) was established with the least absolute shrinkage and selection operator (LASSO) algorithm to predict the RFS of HCC patients, the performance of which was evaluated by receiver operating characteristic curves. The signature was also validated in two external cohort and displayed effective discrimination and prediction for the RFS of HCC patients. Conclusions In conclusion, the present study elucidated the underlying mechanisms of tumorigenesis and progression, provided two visualized ceRNA networks and successfully identified several potential biomarkers for HCC recurrence prediction and targeted therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhixiang Yu ◽  
Haiyan He ◽  
Yanan Chen ◽  
Qiuhe Ji ◽  
Min Sun

AbstractOvarian cancer (OV) is a common type of carcinoma in females. Many studies have reported that ferroptosis is associated with the prognosis of OV patients. However, the mechanism by which this occurs is not well understood. We utilized Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) to identify ferroptosis-related genes in OV. In the present study, we applied Cox regression analysis to select hub genes and used the least absolute shrinkage and selection operator to construct a prognosis prediction model with mRNA expression profiles and clinical data from TCGA. A series of analyses for this signature was performed in TCGA. We then verified the identified signature using International Cancer Genome Consortium (ICGC) data. After a series of analyses, we identified six hub genes (DNAJB6, RB1, VIMP/ SELENOS, STEAP3, BACH1, and ALOX12) that were then used to construct a model using a training data set. The model was then tested using a validation data set and was found to have high sensitivity and specificity. The identified ferroptosis-related hub genes might play a critical role in the mechanism of OV development. The gene signature we identified may be useful for future clinical applications.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11273
Author(s):  
Lei Yang ◽  
Weilong Yin ◽  
Xuechen Liu ◽  
Fangcun Li ◽  
Li Ma ◽  
...  

Background Hepatocellular carcinoma (HCC) is considered to be a malignant tumor with a high incidence and a high mortality. Accurate prognostic models are urgently needed. The present study was aimed at screening the critical genes for prognosis of HCC. Methods The GSE25097, GSE14520, GSE36376 and GSE76427 datasets were obtained from Gene Expression Omnibus (GEO). We used GEO2R to screen differentially expressed genes (DEGs). A protein-protein interaction network of the DEGs was constructed by Cytoscape in order to find hub genes by module analysis. The Metascape was performed to discover biological functions and pathway enrichment of DEGs. MCODE components were calculated to construct a module complex of DEGs. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. ONCOMINE was employed to assess the mRNA expression levels of key genes in HCC, and the survival analysis was conducted using the array from The Cancer Genome Atlas (TCGA) of HCC. Then, the LASSO Cox regression model was performed to establish and identify the prognostic gene signature. We validated the prognostic value of the gene signature in the TCGA cohort. Results We screened out 10 hub genes which were all up-regulated in HCC tissue. They mainly enrich in mitotic cell cycle process. The GSEA results showed that these data sets had good enrichment score and significance in the cell cycle pathway. Each candidate gene may be an indicator of prognostic factors in the development of HCC. However, hub genes expression was weekly associated with overall survival in HCC patients. LASSO Cox regression analysis validated a five-gene signature (including CDC20, CCNB2, NCAPG, ASPM and NUSAP1). These results suggest that five-gene signature model may provide clues for clinical prognostic biomarker of HCC.


2021 ◽  
Author(s):  
Xiaokai Yan ◽  
Chiying Xiao ◽  
Kunyan Yue ◽  
Min Chen ◽  
Hang Zhou

Abstract Background: Change in the genome plays a crucial role in cancerogenesis and many biomarkers can be used as effective prognostic indicators in diverse tumors. Currently, although many studies have constructed some predictive models for hepatocellular carcinoma (HCC) based on molecular signatures, the performance of which is unsatisfactory. To fill this shortcoming, we hope to construct a novel and accurate prognostic model with multi-omics data to guide prognostic assessments of HCC. Methods: The TCGA training set was used to identify crucial biomarkers and construct single-omic prognostic models through difference analysis, univariate Cox, and LASSO/stepwise Cox analysis. Then the performances of single-omic models were evaluated and validated through survival analysis, Harrell’s concordance index (C-index), and receiver operating characteristic (ROC) curve, in the TCGA test set and external cohorts. Besides, a comprehensive model based on multi-omics data was constructed via multiple Cox analysis, and the performance of which was evaluated in the TCGA training set and TCGA test set. Results: We identified 16 key mRNAs, 20 key lncRNAs, 5 key miRNAs, 5 key CNV genes, and 7 key SNPs which were significantly associated with the prognosis of HCC, and constructed 5 single-omic models which showed relatively good performance in prognostic prediction with c-index ranged from 0.63 to 0.75 in the TCGA training set and test set. Besides, we validated the mRNA model and the SNP model in two independent external datasets respectively, and good discriminating abilities were observed through survival analysis (P < 0.05). Moreover, the multi-omics model based on mRNA, lncRNA, miRNA, CNV, and SNP information presented a quite strong predictive ability with c-index over 0.80 and all AUC values at 1,3,5-years more than 0.84.Conclusion: In this study, we identified many biomarkers that may help study underlying carcinogenesis mechanisms in HCC, and constructed five single-omic models and an integrated multi-omics model that may provide effective and reliable guides for prognosis assessment and treatment decision-making.


2021 ◽  
Vol 27 ◽  
Author(s):  
Xili Jiang ◽  
Wei Zhang ◽  
Lifeng Li ◽  
Shucai Xie

Hepatocellular carcinoma (HCC), a high mortality malignancy, has become a worldwide public health concern. Acquired resistance to the multikinase inhibitor sorafenib challenges its clinical efficacy and the survival benefits it provides to patients with advanced HCC. This study aimed to identify critical genes and pathways associated with sorafenib resistance in HCC using integrated bioinformatics analysis. Differentially expressed genes (DEGs) were identified using four HCC gene expression profiles (including 34 sorafenib-resistant and 29 sorafenib-sensitive samples) based on the robust rank aggregation method and R software. Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. A protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING), and small molecules reversing sorafenib resistance were searched for using the connectivity map (CMAP) database. Pearson correlation and survival analyses of hub genes were performed using cBioPortal and Gene Expression Profiling and Interactive Analysis (GEPIA). Finally, the expression levels of hub genes in sorafenib-resistant HCC cells were verified using quantitative polymerase chain reaction (q-PCR). A total of 165 integrated DEGs (66 upregulated and 99 downregulated in sorafenib resistant samples compared sorafenib sensitive ones) primarily enriched in negative regulation of endopeptidase activity, extracellular exosome, and protease binding were identified. Some pathways were commonly shared between the integrated DEGs. Seven promising therapeutic agents and 13 hub genes were identified. These findings provide a strategy and theoretical basis for overcoming sorafenib resistance in HCC patients.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2020 ◽  
Author(s):  
Xiaohong - Liu ◽  
Qian - Xu ◽  
Zi-Jing - Li ◽  
Bin - Xiong

Abstract BackgroundMetabolic reprogramming is an important hallmark in the development of malignancies. Numerous metabolic genes have been demonstrated to participate in the progression of hepatocellular carcinoma (HCC). However, the prognostic significance of the metabolic genes in HCC remains elusive. MethodsWe downloaded the gene expression profiles and clinical information from the GEO, TCGA and ICGC databases. The differently expressed metabolic genes were identified by using Limma R package. Univariate Cox regression analysis and LASSO (Least absolute shrinkage and selection operator) Cox regression analysis were utilized to uncover the prognostic significance of metabolic genes. A metabolism-related prognostic model was constructed in TCGA cohort and validated in ICGC cohort. Furthermore, we constructed a nomogram to improve the accuracy of the prognostic model by using the multivariate Cox regression analysis.ResultsThe high-risk score predicted poor prognosis for HCC patients in the TCGA cohort, as confirmed in the ICGC cohort (P < 0.001). And in the multivariate Cox regression analysis, we observed that risk score could act as an independent prognostic factor for the TCGA cohort (HR (hazard ratio) 3.635, 95% CI (confidence interval)2.382-5.549) and the ICGC cohort (HR1.905, 95%CI 1.328-2.731). In addition, we constructed a nomogram for clinical use, which suggested a better prognostic model than risk score.ConclusionsOur study identified several metabolic genes with important prognostic value for HCC. These metabolic genes can influence the progression of HCC by regulating tumor biology and can also provide metabolic targets for the precise treatment of HCC.


Sign in / Sign up

Export Citation Format

Share Document