scholarly journals Comprehensive analyses of competing endogenous RNA networks reveal potential biomarkers for predicting hepatocellular carcinoma recurrence

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ping Yan ◽  
Zuotian Huang ◽  
Tong Mou ◽  
Yunhai Luo ◽  
Yanyao Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common and deadly malignant tumors, with a high rate of recurrence worldwide. This study aimed to investigate the mechanism underlying the progression of HCC and to identify recurrence-related biomarkers. Methods We first analyzed 132 HCC patients with paired tumor and adjacent normal tissue samples from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). The expression profiles and clinical information of 372 HCC patients from The Cancer Genome Atlas (TCGA) database were next analyzed to further validate the DEGs, construct competing endogenous RNA (ceRNA) networks and discover the prognostic genes associated with recurrence. Finally, several recurrence-related genes were evaluated in two external cohorts, consisting of fifty-two and forty-nine HCC patients, respectively. Results With the comprehensive strategies of data mining, two potential interactive ceRNA networks were constructed based on the competitive relationships of the ceRNA hypothesis. The ‘upregulated’ ceRNA network consists of 6 upregulated lncRNAs, 3 downregulated miRNAs and 5 upregulated mRNAs, and the ‘downregulated’ network includes 4 downregulated lncRNAs, 12 upregulated miRNAs and 67 downregulated mRNAs. Survival analysis of the genes in the ceRNA networks demonstrated that 20 mRNAs were significantly associated with recurrence-free survival (RFS). Based on the prognostic mRNAs, a four-gene signature (ADH4, DNASE1L3, HGFAC and MELK) was established with the least absolute shrinkage and selection operator (LASSO) algorithm to predict the RFS of HCC patients, the performance of which was evaluated by receiver operating characteristic curves. The signature was also validated in two external cohort and displayed effective discrimination and prediction for the RFS of HCC patients. Conclusions In conclusion, the present study elucidated the underlying mechanisms of tumorigenesis and progression, provided two visualized ceRNA networks and successfully identified several potential biomarkers for HCC recurrence prediction and targeted therapies.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chao Yang ◽  
Shuoyang Huang ◽  
Fengyu Cao ◽  
Yongbin Zheng

Abstract Background and aim Lipid metabolic reprogramming is considered to be a new hallmark of malignant tumors. The purpose of this study was to explore the expression profiles of lipid metabolism-related genes (LMRG) in colorectal cancer (CRC). Methods The lipid metabolism statuses of 500 CRC patients from the Cancer Genome Atlas (TCGA) and 523 from the Gene Expression Omnibus (GEO GSE39582) database were analyzed. The risk signature was constructed by univariate Cox regression and least absolute shrinkage and selection operator (LASSO) Cox regression. Results A novel four-LMRG signature (PROCA1, CCKBR, CPT2, and FDFT1) was constructed to predict clinical outcomes in CRC patients. The risk signature was shown to be an independent prognostic factor for CRC and was associated with tumour malignancy. Principal components analysis demonstrated that the risk signature could distinguish between low- and high-risk patients. There were significantly differences in abundances of tumor-infiltrating immune cells and mutational landscape between the two risk groups. Patients in the low-risk group were more likely to have higher tumor mutational burden, stem cell characteristics, and higher PD-L1 expression levels. Furthermore, a genomic-clinicopathologic nomogram was established and shown to be a more effective risk stratification tool than any clinical parameter alone. Conclusions This study demonstrated the prognostic value of LMRG and showed that they may be partially involved in the suppressive immune microenvironment formation.


2020 ◽  
Author(s):  
Junhao Yin ◽  
Xiaoli Zeng ◽  
Zexin Ai ◽  
Miao Yu ◽  
Yang’ou Wu ◽  
...  

Abstract Background: A growing evidence suggests that long non-coding RNAs (lncRNAs) can function as a microRNA (miRNA) sponge in various diseases including oral cancer. However, the pathophysiological function of lncRNAs remains unclear. Methods: Based on the competitive endogenous RNA (ceRNA) theory, we constructed a lncRNA-miRNA-mRNA network in oral cancer with the human expression profiles GSE74530 from the Gene Expression Omnibus (GEO) database. We used topological analysis to determine the hub lncRNAs in the regulatory ceRNA network. Then, function enrichment analysis was performed using the clusterProfiler R package. Clinical information was downloaded from The Cancer Genome Atlas (TCGA) database and survival analysis was performed with Kaplan-Meier analysis. Results: A total of 238 potential co-dysregulated competing triples were obtained in the lncRNA-associated ceRNA network in oral cancer, which consisted of 10 lncRNA nodes, 41 miRNA nodes and 122 mRNA nodes. Additionally, we found lncRNA HCG22 exhibiting superior potential as a diagnostic and prognostic marker of oral cancer. Conclusions: Our findings provide novel insights to understand the ceRNA regulation in oral cancer and identify a novel lncRNA as a potential molecular biomarker.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuli Zhang ◽  
Dinggui Chen ◽  
Miaomiao Yang ◽  
Xianfeng Qian ◽  
Chunmei Long ◽  
...  

The role of long noncoding RNAs- (lncRNAs-) associated competing endogenous RNA (ceRNA) in the field of hepatocellular carcinoma (HCC) biology is well established, but the involvement of lncRNAs competing interactions in the progression of liver cirrhosis to HCC is still unclear. We aimed to explore the differential expression profiles of lncRNAs, microRNAs (miRNA), and messenger RNAs (mRNAs) to construct a functional ceRNA network in cirrhotic HCC. The lncRNA, miRNA, and mRNA expression datasets were obtained from Gene Expression Omnibus and The Cancer Genome Atlas. Based on miRanda and TargetScan, the HCC-specific ceRNA network was constructed to illustrate the coexpression regulatory relationship of lncRNAs, miRNAs, and mRNAs. The potential prognostic indicators in the network were confirmed by survival analysis and validated by qRT-PCR. A total of 74 lncRNAs, 36 intersection miRNAs, and 949 mRNAs were differentially expressed in cirrhotic HCC samples compared with cirrhosis samples. We constructed a ceRNA network, including 47 lncRNAs, 35 miRNAs, and 168 mRNAs. Survival analysis demonstrated that 2 lncRNAs (EGOT and SERHL), 4 miRNAs, and 40 mRNAs were significantly associated with the overall survival of HCC patients. Two novel regulatory pathways, EGOT-miR-32-5p-XYLT2 axis and SERHL-miR-1269a/miR-193b-3p-BCL2L1/SYK/ARNT/CHST3/LPCAT1 axis, were built up and contribute to the underlying mechanism of HCC pathogenesis. The higher-expressed SERHL was associated with a higher risk of all-cause death. The expressions of SERHL-miR-1269a-BCL2L1 were significantly different using qRT-PCR in vitro studies. lncRNAs EGOT and SERHL might serve as effective prognostic biomarkers and potential therapeutic targets in cirrhotic HCC treatment.


2020 ◽  
Author(s):  
Xiao-Qing Lu ◽  
Jia-qian Zhang ◽  
Jun Qiao ◽  
Sheng-Xiao Zhang ◽  
Meng-Ting Qiu ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common solid malignant tumors worldwide with a high-recurrence-rate. Identifying the molecular signatures and specific biomarkers of GC might provide novel clues for GC prognosis and targeted therapy.Methods: Gene expression profiles were obtained from the ArrayExpress and Gene Expression Omnibus database. Differentially expressed genes (DEGs) were picked out by R software. The hub genes were screened by cytoHubba plugin. Their prognostic values were assessed by Kaplan–Meier survival analyses and the gene expression profiling interactive analysis (GEPIA). Finally, qRT-PCR in GC tissue samples was established to validate these DEGs. Results: Total of 295 DEGs were identified between GC and their corresponding normal adjacent tissue samples in E-MTAB-1440, GSE79973, GSE19826, GSE13911, GSE27342, GSE33335 and GSE56807 datasets, including 117 up-regulated and 178 down-regulated genes. Among them, 7 vital upregulated genes (HMMR, SPP1, FN1, CCNB1, CXCL8, MAD2L1 and CCNA2) were selected. Most of them had a significantly worse prognosis except SPP1. Using qRT-PCR, we validated that their transcriptions in our GC tumor tissue were upregulated except SPP1 and FN1, which correlated with tumor relapse and predicts poorer prognosis in GC patients.Discussion: We have identified 5 upregulated DEGs (HMMR, CCNB1, CXCL8, MAD2L1, and CCNA2) in GC patients with poor prognosis using integrated bioinformatical methods, which could be potential biomarkers and therapeutic targets for GC treatment.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiao-Qing Lu ◽  
Jia-Qian Zhang ◽  
Sheng-Xiao Zhang ◽  
Jun Qiao ◽  
Meng-Ting Qiu ◽  
...  

Abstract Background Gastric cancer (GC) is one of the most common solid malignant tumors worldwide with a high-recurrence-rate. Identifying the molecular signatures and specific biomarkers of GC might provide novel clues for GC prognosis and targeted therapy. Methods Gene expression profiles were obtained from the ArrayExpress and Gene Expression Omnibus database. Differentially expressed genes (DEGs) were picked out by R software. The hub genes were screened by cytohubba plugin. Their prognostic values were assessed by Kaplan–Meier survival analyses and the gene expression profiling interactive analysis (GEPIA). Finally, qRT-PCR in GC tissue samples was established to validate these DEGs. Results Total of 295 DEGs were identified between GC and their corresponding normal adjacent tissue samples in E-MTAB-1440, GSE79973, GSE19826, GSE13911, GSE27342, GSE33335 and GSE56807 datasets, including 117 up-regulated and 178 down-regulated genes. Among them, 7 vital upregulated genes (HMMR, SPP1, FN1, CCNB1, CXCL8, MAD2L1 and CCNA2) were selected. Most of them had a significantly worse prognosis except SPP1. Using qRT-PCR, we validated that their transcriptions in our GC tumor tissue were upregulated except SPP1 and FN1, which correlated with tumor relapse and predicts poorer prognosis in GC patients. Conclusions We have identified 5 upregulated DEGs (HMMR, CCNB1, CXCL8, MAD2L1, and CCNA2) in GC patients with poor prognosis using integrated bioinformatical methods, which could be potential biomarkers and therapeutic targets for GC treatment.


2020 ◽  
Vol 10 (8) ◽  
pp. 1189-1196
Author(s):  
Kaikai Ren ◽  
Jiakang Ma ◽  
Bo Zhou ◽  
Xiaoyan Lin ◽  
Mingyu Hou ◽  
...  

Hepatocellular carcinoma (HCC) is a malignancy originating from hepatocytes with a high rate of distant metastasis and recurrence. HCC prognosis remains poorly understood, although its diagnosis and treatment have improved globally. Therefore, it is necessary to identify reliable predictive and prognostic indicators of HCC. HCC gene expression profiles and corresponding clinical data were downloaded from The Cancer Genome Atlas. Seven lncRNAs (C10orf91, AC011352.3, AC015722.2, AC006372.1, PICSAR, AC110285.3, and AP001972.4) associated with immune and clinicopathological features were identified as biomarker candidates for HCC prognosis based on single-sample gene set enrichment analysis, the ESTIMATE algorithm, and Cox PHR analyses. Altogether, the findings revealed that the seven immune-related lncRNAs may provide a reference for improving HCC prognosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Linhe Wang ◽  
Xiangchao Ling ◽  
Caihui Zhu ◽  
Zhiheng Zhang ◽  
Ziming Wang ◽  
...  

Seizure-related 6 homolog-like 2 (SEZ6L2), which is localized on the cell surface, has been found to be associated with tumor angiogenesis and lung cancer progression. However, the role of SEZ6L2 in hepatocellular carcinoma (HCC) is still unclear. We obtained data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) to investigate SEZ6L2 expression and regulation in HCC. Then, HCC tissue samples were collected to verify SEZ6L2 by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical staining (IHC). Patient information was collected for survival and prognosis analysis. qRT-PCR, IHC, and bioinformatics analysis showed that the SEZ6L2 protein was highly expressed in HCC samples. Clinical data showed that high SEZ6L2 protein expression was correlated with tumor-node-metastasis (TNM) stages (P=0.046), tumor number (P=0.016), and tumor size (P=0.029). Meanwhile, SEZ6L2 overexpression was closely associated with poor overall survival and disease-free survival in HCC patients. Moreover, SEZ6L2 is an independent prognostic predictor for the survival of HCC patients. This study suggests a significant correlation between SEZ6L2 and HCC, which means that SEZ6L2 may potentially serve as a useful prognostic biomarker for HCC patients.


2021 ◽  
Vol 8 ◽  
Author(s):  
Minxiao Jiang ◽  
Liangliang Ren ◽  
Yuanlei Chen ◽  
Huan Wang ◽  
Haiyang Wu ◽  
...  

Accumulating evidence indicates that hypoxia is highly associated with bladder cancer genesis, progression, and immune microenvironment. Nevertheless, few studies have identified the role of hypoxia-related genes as a prognostic signature in bladder cancer. This study aimed to establish a hypoxia-related signature with high accuracy for prognosis and immune microenvironment prediction in bladder cancer. We obtained expression profiles and clinical information from Gene Expression Omnibus and The Cancer Genome Atlas. Then the univariate Cox regression, random survival forest algorithm, and multivariate Cox regression analysis were conducted to identify the core genes and four hypoxia-related genes (ANXA2, GALK1, COL5A1, and HS3ST1) were selected to construct the signature. Kaplan-Meier survival analysis demonstrated that patients with a low-risk score had a higher disease-specific survival rate (p < 0.0001). The areas under the curve of the signature were 0.829 at 1 year, 0.869 at 3 years, and 0.848 at 5 years, respectively. Additionally, we found this hypoxia-related signature was highly correlated with tumor immune microenvironment and had the potential to predict the efficacy of immunotherapy. In summary, our study developed a hypoxia-related signature, which had high accuracy for prognosis prediction and the potential to guide the immunotherapy for bladder cancer patients.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11627
Author(s):  
Jiaying Liang ◽  
Yaofeng Zhi ◽  
Wenhui Deng ◽  
Weige Zhou ◽  
Xuejun Li ◽  
...  

Background Hepatocellular carcinoma (HCC) with high heterogeneity is one of the most frequent malignant tumors throughout the world. However, there is no research to establish a ferroptosis-related lncRNAs (FRlncRNAs) signature for the patients with HCC. Therefore, this study was designed to establish a novel FRlncRNAs signature to predict the survival of patients with HCC. Method The expression profiles of lncRNAs were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. FRlncRNAs co-expressed with ferroptosis-related genes were utilized to establish a signature. Cox regression was used to construct a novel three FRlncRNAs signature in the TCGA cohort, which was verified in the GEO validation cohort. Results Three differently expressed FRlncRNAs significantly associated with prognosis of HCC were identified, which composed a novel FRlncRNAs signature. According to the FRlncRNAs signature, the patients with HCC could be divided into low- and high-risk groups. Patients with HCC in the high-risk group displayed shorter overall survival (OS) contrasted with those in the low-risk group (P < 0.001 in TCGA cohort and P = 0.045 in GEO cohort). This signature could serve as a significantly independent predictor in Cox regression (multivariate HR > 1, P < 0.001), which was verified to a certain extent in the GEO cohort (univariate HR > 1, P < 0.05). Meanwhile, it was also a useful tool in predicting survival among each stratum of gender, age, grade, stage, and etiology,etc. This signature was connected with immune cell infiltration (i.e., Macrophage, Myeloid dendritic cell, and Neutrophil cell, etc.) and immune checkpoint blockade targets (PD-1, CTLA-4, and TIM-3). Conclusion The three FRlncRNAs might be potential therapeutic targets for patients, and their signature could be utilized for prognostic prediction in HCC.


2021 ◽  
Vol 49 (1) ◽  
pp. 030006052098154
Author(s):  
Xin Yuan ◽  
Yize Zhang ◽  
Zujiang Yu

Objective To investigate the association between microRNA-3615 (miR-3615) expression and the prognosis and clinicopathological features in patients with hepatocellular carcinoma (HCC). Methods We obtained clinicopathological and genomic data and prognostic information on HCC patients from The Cancer Genome Atlas (TCGA) database. We then analyzed differences in miR-3615 expression levels between HCC and adjacent tissues using SPSS software, and examined the relationships between miR-3615 expression levels and clinicopathological characteristics. We also explored the influence of miR-3615 expression levels on the prognosis of HCC patients using Kaplan–Meier survival curve analysis. Results Based on data for 345 HCC and 50 adjacent normal tissue samples, expression levels of miR-3615 were significantly higher in HCC tissues compared with adjacent tissues. MiR-3615 expression levels in HCC patients were negatively correlated with overall survival time and positively correlated with high TNM stage, serum Ki-67 expression level, and serum alpha-fetoprotein level. There were no significant correlations between miR-3615 expression and age, sex, and pathological grade. Conclusion MiR-3615 may be a promising new biomarker and prognostic factor for HCC.


Sign in / Sign up

Export Citation Format

Share Document