Relationship Between mir15b and Sal-Like Protein 4 and Biological Behavior of Oral Squamous Cell Carcinoma

2021 ◽  
Vol 11 (2) ◽  
pp. 308-314
Author(s):  
Zengbo Wu ◽  
Yan Yan ◽  
Xianzhuo Chen ◽  
Yanling Liu ◽  
Dinggen Chen

miR15b and SALL4 are involved in a variety of tumor progression. The roles of miR15b and SALL4 in oral squamous cell carcinoma (OSCC) remains unclear. The tumors and normal mucosa of OSCC patients were collected to detect miR15b and SALL4 level by Real-time PCR and analyze their correlation with OSCC clinicopathological features. Oral cancer Tca8113 cells were separated into control group; miR15b mimics group and miR15b inhibitor group followed by analysis of SALL4 expression, cell survival by MTT assay; cell invasion by Transwell chamber assay, as well as expression of N-cadherin and Vimentin and correlated with TNM stage, tumor volume and metastasis, and positively with differentiation TGF-β by Western blot. miR15b expression was decreased and SALL4 expression was increased in OSCC tumor tissues. miR15b was negatively degree (P < 0.05), whereas, opposite correlation of SALL4 with the above parameters was found (P < 0.05). miR15b and SALL4 were negatively correlated. MiR15b mimics significantly up-regulated MiR15b, decreased SALL4 expression, inhibited Tca8113 cell proliferation and invasion, as well as reduced N-cadherin, Vimentin and TGF-βexpression (P < 0.05). Opposite results were found in MiR15b inhibitor group. MiR15b expression is decreased and SALL 4 is increased in OSCC tumor tissues. MiR15b and SALL4 is closely related to OSCC clinicopathological features. MiR15b regulates the expression of EMT-related genes and TGF-β, thereby altering the proliferation and invasion of OSCC cells.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ling Mao ◽  
Xiaoweng Wu ◽  
Zhengpeng Gong ◽  
Ming Yu ◽  
Zhi Huang

Abstract Background/objective Accumulated evidence has demonstrated that aerobic glycolysis serves as a regulator of tumor cell growth, invasion, and angiogenesis. Herein, we explored the role of protein disulfide isomerase family 6 (PDIA6) in the aerobic glycolysis and the progression of oral squamous cell carcinoma (OSCC). Methods The expression pattern of PDIA6 in OSCC tissues was determined by qPCR and western blotting. Lentivirus and small interfering RNAs (siRNAs) were introduced into cells to upregulate and downregulate PDIA6 expression. CCK-8, flow cytometry, transwell, and xenotransplantation models were applied to detect cell proliferation, apoptosis, migration, invasion, and tumorigenesis, respectively. Results A high expression pattern of PDIA6 was observed in OSCC tissues, which was closely associated with lower overall survival and malignant clinical features in OSCC. Compared with the control group, overexpression of PDIA6 induced significant enhancements in cell growth, migration, invasiveness, and tumorigenesis and decreased cell apoptosis, while knockdown of PDIA6 caused opposite results. In addition, overexpression of PDIA6 increased glucose consumption, lactate production, and ATP level in OSCC cells. Conclusion This study demonstrated that PDIA6 expression was elevated in OSCC tissues, and overexpression of it promoted aerobic glycolysis and OSCC progression.


Author(s):  
SANDRA VENTORIN VON ZEIDLER ◽  
JOSÉ ROBERTO VASCONCELOS DE PODESTÁ ◽  
DANIELY SOUZA DE NARDI ◽  
PRISCILA MARINHO ABREU ◽  
MARCELLA SOL ◽  
...  

2014 ◽  
Vol 44 (7) ◽  
pp. 532-537 ◽  
Author(s):  
Hélder Antônio Rebelo Pontes ◽  
Flávia Sirotheau Corrêa Pontes ◽  
Adriana Souza de Jesus ◽  
Maiza Cristina Pereira Soares ◽  
Fábio Luiz Neves Gonçalves ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sophia Mentel ◽  
Kathleen Gallo ◽  
Oliver Wagendorf ◽  
Robert Preissner ◽  
Susanne Nahles ◽  
...  

Abstract Background The aim of this study was to evaluate the possibility of breath testing as a method of cancer detection in patients with oral squamous cell carcinoma (OSCC). Methods Breath analysis was performed in 35 OSCC patients prior to surgery. In 22 patients, a subsequent breath test was carried out after surgery. Fifty healthy subjects were evaluated in the control group. Breath sampling was standardized regarding location and patient preparation. All analyses were performed using gas chromatography coupled with ion mobility spectrometry and machine learning. Results Differences in imaging as well as in pre- and postoperative findings of OSCC patients and healthy participants were observed. Specific volatile organic compound signatures were found in OSCC patients. Samples from patients and healthy individuals could be correctly assigned using machine learning with an average accuracy of 86–90%. Conclusions Breath analysis to determine OSCC in patients is promising, and the identification of patterns and the implementation of machine learning require further assessment and optimization. Larger prospective studies are required to use the full potential of machine learning to identify disease signatures in breath volatiles.


2014 ◽  
Vol 31 (3) ◽  
pp. 1255-1262 ◽  
Author(s):  
FANGFANG JIANG ◽  
WEI ZHAO ◽  
LIJIE ZHOU ◽  
LIN ZHANG ◽  
ZIFENG LIU ◽  
...  

2018 ◽  
Vol 49 (4) ◽  
pp. 1329-1341 ◽  
Author(s):  
Nan Li ◽  
Chuan-Chuan Nan ◽  
Xue-Yun Zhong ◽  
Jun-Quan Weng ◽  
Hai-Dong Fan ◽  
...  

Background/Aims: Emerging evidence suggests that the propagation of oral squamous cell carcinoma (OSCC) is influenced by the abnormal expression of microRNAs (miRNAs). This study aimed to characterize the involvement of miR-182-5p in OSCC by targeting the calcium/ calmodulin-dependent protein kinase II inhibitor CAMK2N1. Methods: miR-182-5p expression was quantified in OSCC tissues and cell lines with reverse transcription polymerase chain reaction (RT-PCR). Cell colony formation, Cell Counting Kit-8 (CCK-8), Ki-67, and nude mouse xenograft assays were used to characterize the role of miR-182-5p in the proliferation of OSCC. A miR-182-5p target gene was identified with western blotting, RT-PCR, and luciferase activity assays. OSCC patient survival based on CAMK2N1 expression was also analyzed. Results: miR-182-5p was up-regulated in in vitro cell lines and in vivo clinical OSCC samples. CCK-8, colony formation, and Ki-67 assays revealed that miR-182-5p promoted the growth and proliferation of OSCC cells. miR-182-5p directly targeted CAMK2N1, as evidenced by luciferase assays and target prediction algorithms. CAMK2N1 operated as a tumor suppressor gene in patients with OSCC. Down-regulating miR-182-5p expression in the CAL-27 cell line restored CAMK2N1-mediated OSCC cell proliferation. miR-182-5p expression inhibited the activation of AKT, ERK1/2, and NF-κB. Mice injected with CAL-27 cells transfected with miR-182-5p-inhibitor demonstrated a significant increase in tumor size and weight and increased CAMK2N1 mRNA and protein expression compared with the miR-negative control group. Conclusion: The miR-182-5p-CAMK2N1 pathway can be potentially targeted to regulate the proliferation of OSCC cells.


Sign in / Sign up

Export Citation Format

Share Document