Isolation, Culture and Identification of Bovine Skeletal Stem Cells

2021 ◽  
Vol 11 (12) ◽  
pp. 2337-2345
Author(s):  
Junhui Lai ◽  
Qin Yang ◽  
Ruining Liang ◽  
Weijun Guan ◽  
Xiuxia Li

The growth plate is essential in long bone formation and contains a wealth of skeletal stem cells (SSCs). Though the origin and the mechanism for SSCs generation remain uncertain, recent studies demonstrate the transition from cartilage to bone that in the lineage for bone development. SSCs possesses the ability to differentiate into bone and cartilage in vitro. In this research, we aimed to isolate and culture the skeletal stem cells from bovine cattle and then studied its biological characterization. The results showed that these bovine SSCs are positive for PDPN+CD73+CD164+CD90+CD44+ cell surface bio-markers, they are capable of self-renewal and differentiation. Our dates proved that SSCs exists in bovine’s long bone.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 270-270 ◽  
Author(s):  
Vladimir Jankovic ◽  
Alessia Ciarrocchi ◽  
Piernicola Boccuni ◽  
Robert Benezra ◽  
Stephen D. Nimer

Abstract Id proteins belong to the basic helix-loop-helix family of transcription factors and act as dominant negative forms of E-protein transcriptional activators. Id mediated E protein silencing has an essential role in restricting differentiation and maintaining self-renewal in embryonic stem cells. However, the role of Id1 in adult stem cells including HSCs has not been described thus far. Having detected relatively high levels of Id1 mRNA in murine adult HSCs (compared to the committed myeloid progenitor cells) we examined the in vivo HSC function in Id1 deficient mice. We observed a >2 fold reduction in HSC frequency in the bone marrow in 8-10w old Id1−/− mice compared to Id1+/+ animals, detected by both lin-c-kit+Sca-1+ (LKS) cell surface marker profile and Hoechst 33342 dye efflux - “side population” phenotype, as well as a ~25% decrease in total bone marrow cellularity. Although Id1 deficient HSCs show robust long-term competitive repopulating capacity in primary transplant recipients, they have markedly impaired hematopoietic function upon secondary transplantation. Id1 null HSCs show a higher rate of S-phase entry in vivo as measured by 3 day BrdU incorporation (ko: 79.0±3.9% vs. wt: 49.7±7.4) and faster initial doubling times in response to cytokine stimulation in vitro during the first 2 days of culture. This failure to maintain normal HSC numbers and the diminished repopulating capacity, in the presence of enhanced cell cycling, suggests a defect in the regulation of self-renewal in Id1 deficient HSCs. Considering the general function of Id1 as an inhibitor of differentiation, the observed effect of Id1 loss could be explained by the excessive recruitment of LKS cells into the actively proliferating differentiated progenitor pool, at the expense of their self-renewal capacity. Consistent with this, sorted Id1−/− HSCs show accelerated expression of cell surface lineage markers in vitro and an increased ratio of CFU-S8 /CFU-S12 in the in vivo spleen colony forming assay. Global gene expression profiling of Id1+/+ vs. Id1−/− hematopoietic cells (using Affymetrix MOE430 Plus chips) revealed insignificant transcriptional deregulation in the committed myeloid progenitor subsets (CMP, GMP, MEP) in the absence of Id1. Meanwhile, Id1−/− HSCs showed a marked change in gene expression pattern (more than 1500 genes with a ≥2 fold difference in expression levels). Differentially regulated transcripts in Id1+/+ vs. Id1−/− HSCs significantly overlap (~30%) with the observed changes in gene expression that accompany the transition of HSCs to the common myeloid progenitor phenotype. Specifically, genes such as c/EBPα and GATA1 are significantly upregulated in Id1 null immunophenotypic HSCs, consistent with an earlier than normal commitment to myelo-erythroid differentiation. In contrast, several known transcriptional regulators of HSC self-renewal (Bmi1, Gfi1, HoxB4) show no significant change in expression pattern. These data clearly indicate the unique role of Id1 in regulating HSC self-renewal by restricting the rate of HSC commitment to the myeloid progenitor cell fate.


Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Luis Fernandez de Castro ◽  
Brian J. Sworder ◽  
Byron Mui ◽  
Kathryn Futrega ◽  
Agnes Berendsen ◽  
...  

AbstractIn a previous transcriptomic study of human bone marrow stromal cells (BMSCs, also known as bone marrow-derived “mesenchymal stem cells”), SFRP2 was highly over-represented in a subset of multipotent BMSCs (skeletal stem cells, SSCs), which recreate a bone/marrow organ in an in vivo ectopic bone formation assay. SFRPs modulate WNT signaling, which is essential to maintain skeletal homeostasis, but the specific role of SFRP2 in BMSCs/SSCs is unclear. Here, we evaluated Sfrp2 deficiency on BMSC/SSC function in models of skeletal organogenesis and regeneration. The skeleton of Sfrp2-deficient (KO) mice is overtly normal; but their BMSCs/SSCs exhibit reduced colony-forming efficiency, reflecting low SSC self-renewal/abundancy. Sfrp2 KO BMSCs/SSCs formed less trabecular bone than those from WT littermates in the ectopic bone formation assay. Moreover, regeneration of a cortical drilled hole defect was dramatically impaired in Sfrp2 KO mice. Sfrp2-deficient BMSCs/SSCs exhibited poor in vitro osteogenic differentiation as measured by Runx2 and Osterix expression and calcium accumulation. Interestingly, activation of the Wnt co-receptor, Lrp6, and expression of Wnt target genes, Axin2, C-myc and Cyclin D1, were reduced in Sfrp2-deficient BMSCs/SSCs. Addition of recombinant Sfrp2 restored most of these activities, suggesting that Sfrp2 acts as a Wnt agonist. We demonstrate that Sfrp2 plays a role in self-renewal of SSCs and in the recruitment and differentiation of adult SSCs during bone healing. SFRP2 is also a useful marker of BMSC/SSC multipotency, and a factor to potentially improve the quality of ex vivo expanded BMSC/SSC products.


Blood ◽  
2011 ◽  
Vol 117 (25) ◽  
pp. 6801-6812 ◽  
Author(s):  
Daniel L. Coutu ◽  
Moïra François ◽  
Jacques Galipeau

Abstract Bone-derived mesenchymal stem cells (MSCs) are important cells for use in cell therapy, tissue engineering, and regenerative medicine, but also to study bone development, homeostasis, and repair. However, little is known about their developmental ontology and in vivo identity. Because fibroblast growth factors (FGFs) play key roles in bone development and their receptors are developmentally regulated in bones, we hypothesized that MSCs should express FGF receptors (FGFRs), reflecting their developmental origin and potential. We show here that FGFR1/2 are expressed by rare mesenchymal progenitors in putative MSC niches in vivo, including the perichondrium, periosteum, and trabecular marrow. FGFR1+ cells often appeared as pericytes. These cells display a characteristic MSC phenotype in vitro when expanded with FGF-2, which appears to maintain MSC stemness by inhibiting cellular senescence through a PI3K/AKT-MDM2 pathway and by promoting proliferation. FGFRs may therefore be involved in MSC self-renewal. In summary, FGFR1/2 are developmentally regulated markers of MSCs in vivo and in vitro and are important in maintaining MSC stemness.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 45
Author(s):  
Ghmkin Hassan ◽  
Said M. Afify ◽  
Shiro Kitano ◽  
Akimasa Seno ◽  
Hiroko Ishii ◽  
...  

Defined by its potential for self-renewal, differentiation and tumorigenicity, cancer stem cells (CSCs) are considered responsible for drug resistance and relapse. To understand the behavior of CSC, the effects of the microenvironment in each tissue are a matter of great concerns for scientists in cancer biology. However, there are many complicated obstacles in the mimicking the microenvironment of CSCs even with current advanced technology. In this context, novel biomaterials have widely been assessed as in vitro platforms for their ability to mimic cancer microenvironment. These efforts should be successful to identify and characterize various CSCs specific in each type of cancer. Therefore, extracellular matrix scaffolds made of biomaterial will modulate the interactions and facilitate the investigation of CSC associated with biological phenomena simplifying the complexity of the microenvironment. In this review, we summarize latest advances in biomaterial scaffolds, which are exploited to mimic CSC microenvironment, and their chemical and biological requirements with discussion. The discussion includes the possible effects on both cells in tumors and microenvironment to propose what the critical factors are in controlling the CSC microenvironment focusing the future investigation. Our insights on their availability in drug screening will also follow the discussion.


2011 ◽  
Vol 5 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Oliver D Schneider ◽  
Dirk Mohn ◽  
Roland Fuhrer ◽  
Karina Klein ◽  
Käthi Kämpf ◽  
...  

Background: The purpose of this preliminary study was to assess the in vivo performance of synthetic, cotton wool-like nanocomposites consisting of a biodegradable poly(lactide-co-glycolide) fibrous matrix and containing either calcium phosphate nanoparticles (PLGA/CaP 60:40) or silver doped CaP nanoparticles (PLGA/Ag-CaP 60:40). Besides its extraordinary in vitro bioactivity the latter biomaterial (0.4 wt% total silver concentration) provides additional antimicrobial properties for treating bone defects exposed to microorganisms. Materials and Methods: Both flexible artificial bone substitutes were implanted into totally 16 epiphyseal and metaphyseal drill hole defects of long bone in sheep and followed for 8 weeks. Histological and histomorphological analyses were conducted to evaluate the biocompatibility and bone formation applying a score system. The influence of silver on the in vivo performance was further investigated. Results: Semi-quantitative evaluation of histology sections showed for both implant materials an excellent biocompatibility and bone healing with no resorption in the adjacent bone. No signs of inflammation were detectable, either macroscopically or microscopically, as was evident in 5 µm plastic sections by the minimal amount of inflammatory cells. The fibrous biomaterials enabled bone formation directly in the centre of the former defect. The area fraction of new bone formation as determined histomorphometrically after 8 weeks implantation was very similar with 20.5 ± 11.2 % and 22.5 ± 9.2 % for PLGA/CaP and PLGA/Ag-CaP, respectively. Conclusions: The cotton wool-like bone substitute material is easily applicable, biocompatible and might be beneficial in minimal invasive surgery for treating bone defects.


Human Cell ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 114-124
Author(s):  
Miho Watanabe ◽  
Akihiro Ohyama ◽  
Hiroshi Ishikawa ◽  
Akira Tanaka

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1408
Author(s):  
Susumu Horikoshi ◽  
Mikihito Kajiya ◽  
Souta Motoike ◽  
Mai Yoshino ◽  
Shin Morimoto ◽  
...  

Three-dimensional clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes (C-MSCs) can be transplanted into tissue defect site with no artificial scaffold. Importantly, most bone formation in the developing process or fracture healing proceeds via endochondral ossification. Accordingly, this present study investigated whether C-MSCs generated with chondro-inductive medium (CIM) can induce successful bone regeneration and assessed its healing process. Human bone marrow-derived MSCs were cultured with xeno-free/serum-free (XF) growth medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. The cell clumps, i.e., C-MSCs, were maintained in XF-CIM. C-MSCs generated with XF-CIM showed enlarged round cells, cartilage matrix, and hypertrophic chondrocytes genes elevation in vitro. Transplantation of C-MSCs generated with XF-CIM induced successful bone regeneration in the SCID mouse calvaria defect model. Immunofluorescence staining for human-specific vimentin demonstrated that donor human and host mouse cells cooperatively contributed the bone formation. Besides, the replacement of the cartilage matrix into bone was observed in the early period. These findings suggested that cartilaginous C-MSCs generated with XF-CIM can induce bone regeneration via endochondral ossification.


2021 ◽  
Author(s):  
Hong-Chen Yan ◽  
Yu Sun ◽  
Ming-Yu Zhang ◽  
Shu-Er Zhang ◽  
Jia-Dong Sun ◽  
...  

Abstract Background Skin-derived stem cells (SDSCs) are a class of adult stem cells (ASCs) that have the ability to self-renew and differentiate. The regulation mechanisms involved in the differentiation of ASCs is a hot topic. Porcine models have close similarities to humans and porcine SDSCs (pSDSCs) offer an ideal in vitro model to investigate human ASCs. To date, studies concerning the role of yes-associated protein (YAP) in ASCs are limited, and the mechanism of its influence on self-renewal and differentiation of ASCs remain unclear. In this paper, we explore the link between the transcriptional regulator YAP and the fate of pSDSCs. Results We found that YAP promotes the pluripotent state of pSDSCs by maintaining the high expression of the pluripotency genes Sox2, Oct4. The overexpression of YAP prevented the differentiation of pSDSCs and the depletion of YAP by small interfering RNA (siRNAs) suppressed the self-renewal of pSDSCs. In addition, we found that YAP regulates the fate of pSDSCs through a mechanism related to the Wnt/β-catenin signaling pathway. When an activator of the Wnt/β-catenin signaling pathway, CHIR99021, was added to pSDSCs overexpressing YAP the ability of pSDSCs to differentiate was partially restored. Conversely, when XAV939 an inhibitor of Wnt/β-catenin signaling pathway, was added to YAP knockdown pSDSCs a higher self-renewal ability resulted. Conclusions our results suggested that, YAP and the Wnt/β-catenin signaling pathway interact to regulate the fate of pSDSCs.


Stem Cells ◽  
2007 ◽  
Vol 25 (11) ◽  
pp. 2760-2769 ◽  
Author(s):  
Li Xin ◽  
Rita U. Lukacs ◽  
Devon A. Lawson ◽  
Donghui Cheng ◽  
Owen N. Witte

Sign in / Sign up

Export Citation Format

Share Document