Automated Outlier Detection for Electrical Motors and Transformers

2020 ◽  
Vol 17 (9) ◽  
pp. 4703-4708
Author(s):  
K. Anitha Kumari ◽  
Avinash Sharma ◽  
S. Nivethitha ◽  
V. Dharini ◽  
V. Sanjith ◽  
...  

Electrical appliances most commonly consist of two electrical devices, namely, electrical motors and transformers. Typically, electrical motors are normally used in all sort of industrial purposes. Failures of such motors results in serious problems, such as overheat, shut down and even burnt, in their host systems. Thus, more attention have to be paid in detecting the outliers. In a similar way, to avoid the unexpected power reliability problems and system damages, the prediction of the failures in the transformers is expected to quantify the impacts. By predicting the failures, the lifetime of the transformers increases and unnecessary accidents is avoided. Therefore, this paper presents the detection of the outliers in electrical motors and failures in transformers using supervised machine learning algorithms. Machine learning techniques such as Support Vector Machine (SVM), Random Forest (RF) and regression techniques like Support Vector Regression (SVR), Polynomial Regression (PR) are used to analyze the use cases of different motor specifications. Evaluation and the efficiency of findings are proved by considering accuracy, precision, F-measure, and recall for motors. Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE) and R-squared Error (R2) are considered as metrics for transformers. The proposed approach helps to identify the anomalies like vibration loss, copper loss and overheating in the industrial motor and to determine the abnormal functioning of the transformer that in turn leads to ascertain the lifetime. The proposed system analyses the behaviour of the electrical machines using the energy meter data and reports the outliers to users. It also analyses the abnormalities occurring in the transformer using the parameters involved in the degradation of the paper-oil insulation system and the voltage of operation as a whole leads to the predict the lifetime.

Author(s):  
Gaurav Singh ◽  
Shivam Rai ◽  
Himanshu Mishra ◽  
Manoj Kumar

The prime objective of this work is to predicting and analysing the Covid-19 pandemic around the world using Machine Learning algorithms like Polynomial Regression, Support Vector Machine and Ridge Regression. And furthermore, assess and compare the performance of the varied regression algorithms as far as parameters like R squared, Mean Absolute Error, Mean Squared Error and Root Mean Squared Error. In this work, we have used the dataset available on Covid-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at John Hopkins University. We have analyzed the covid19 cases from 22/1/2020 till now. We applied a supervised machine learning prediction model to forecast the possible confirmed cases for the next ten days.


Author(s):  
Ahmed Hassan Mohammed Hassan ◽  
◽  
Arfan Ali Mohammed Qasem ◽  
Walaa Faisal Mohammed Abdalla ◽  
Omer H. Elhassan

Day by day, the accumulative incidence of COVID-19 is rapidly increasing. After the spread of the Corona epidemic and the death of more than a million people around the world countries, scientists and researchers have tended to conduct research and take advantage of modern technologies to learn machine to help the world to get rid of the Coronavirus (COVID-19) epidemic. To track and predict the disease Machine Learning (ML) can be deployed very effectively. ML techniques have been anticipated in areas that need to identify dangerous negative factors and define their priorities. The significance of a proposed system is to find the predict the number of people infected with COVID19 using ML. Four standard models anticipate COVID-19 prediction, which are Neural Network (NN), Support Vector Machines (SVM), Bayesian Network (BN) and Polynomial Regression (PR). The data utilized to test these models content of number of deaths, newly infected cases, and recoveries in the next 20 days. Five measures parameters were used to evaluate the performance of each model, namely root mean squared error (RMSE), mean squared error (MAE), mean absolute error (MSE), Explained Variance score and r2 score (R2). The significance and value of proposed system auspicious mechanism to anticipate these models for the current cenario of the COVID-19 epidemic. The results showed NN outperformed the other models, while in the available dataset the SVM performs poorly in all the prediction. Reference to our results showed that injuries will increase slightly in the coming days. Also, we find that the results give rise to hope due to the low death rate. For future perspective, case explanation and data amalgamation must be kept up persistently.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Hye-Jin Kim ◽  
Sung Min Park ◽  
Byung Jin Choi ◽  
Seung-Hyun Moon ◽  
Yong-Hyuk Kim

We propose three quality control (QC) techniques using machine learning that depend on the type of input data used for training. These include QC based on time series of a single weather element, QC based on time series in conjunction with other weather elements, and QC using spatiotemporal characteristics. We performed machine learning-based QC on each weather element of atmospheric data, such as temperature, acquired from seven types of IoT sensors and applied machine learning algorithms, such as support vector regression, on data with errors to make meaningful estimates from them. By using the root mean squared error (RMSE), we evaluated the performance of the proposed techniques. As a result, the QC done in conjunction with other weather elements had 0.14% lower RMSE on average than QC conducted with only a single weather element. In the case of QC with spatiotemporal characteristic considerations, the QC done via training with AWS data showed performance with 17% lower RMSE than QC done with only raw data.


The advancement in cyber-attack technologies have ushered in various new attacks which are difficult to detect using traditional intrusion detection systems (IDS).Existing IDS are trained to detect known patterns because of which newer attacks bypass the current IDS and go undetected. In this paper, a two level framework is proposed which can be used to detect unknown new attacks using machine learning techniques. In the first level the known types of classes for attacks are determined using supervised machine learning algorithms such as Support Vector Machine (SVM) and Neural networks (NN). The second level uses unsupervised machine learning algorithms such as K-means. The experimentation is carried out with four models with NSL- KDD dataset in Openstack cloud environment. The Model with Support Vector Machine for supervised machine learning, Gradual Feature Reduction (GFR) for feature selection and K-means for unsupervised algorithm provided the optimum efficiency of 94.56 %.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lasini Wickramasinghe ◽  
Rukmal Weliwatta ◽  
Piyal Ekanayake ◽  
Jeevani Jayasinghe

This paper presents the application of a multiple number of statistical methods and machine learning techniques to model the relationship between rice yield and climate variables of a major region in Sri Lanka, which contributes significantly to the country’s paddy harvest. Rainfall, temperature (minimum and maximum), evaporation, average wind speed (morning and evening), and sunshine hours are the climatic factors considered for modeling. Rice harvest and yield data over the last three decades and monthly climatic data were used to develop the prediction model by applying artificial neural networks (ANNs), support vector machine regression (SVMR), multiple linear regression (MLR), Gaussian process regression (GPR), power regression (PR), and robust regression (RR). The performance of each model was assessed in terms of the mean squared error (MSE), correlation coefficient (R), mean absolute percentage error (MAPE), root mean squared error ratio (RSR), BIAS value, and the Nash number, and it was found that the GPR-based model is the most accurate among them. Climate data collected until early 2019 (Maha season of year 2018) were used to develop the model, and an independent validation was performed by applying data of the Yala season of year 2019. The developed model can be used to forecast the future rice yield with very high accuracy.


Author(s):  
Divya Choudhary ◽  
Siripong Malasri

This paper implements and compares machine learning algorithms to predict the amount of coolant required during transportation of temperature sensitive products. The machine learning models use trip duration, product threshold temperature and ambient temperature as the independent variables to predict the weight of gel packs need to keep the temperature of the product below its threshold temperature value. The weight of the gel packs can be translated to number of gel packs required. Regression using Neural Networks, Support Vector Regression, Gradient Boosted Regression and Elastic Net Regression are compared. The Neural Networks based model performs the best in terms of its mean absolute error value and r-squared values. A Neural Network model is then deployed on as webservice to score allowing for client application to make rest calls to estimate gel pack weights


2020 ◽  
Vol 17 (3) ◽  
pp. 360-383 ◽  
Author(s):  
Anantha Narayanan ◽  
Farzanah Desai ◽  
Tom Stewart ◽  
Scott Duncan ◽  
Lisa Mackay

Background: Application of machine learning for classifying human behavior is increasingly common as access to raw accelerometer data improves. The aims of this scoping review are (1) to examine if machine-learning techniques can accurately identify human activity behaviors from raw accelerometer data and (2) to summarize the practical implications of these machine-learning techniques for future work. Methods: Keyword searches were performed in Scopus, Web of Science, and EBSCO databases in 2018. Studies that applied supervised machine-learning techniques to raw accelerometer data and estimated components of physical activity were included. Information on study characteristics, machine-learning techniques, and key study findings were extracted from included studies. Results: Of the 53 studies included in the review, 75% were published in the last 5 years. Most studies predicted postures and activity type, rather than intensity, and were conducted in controlled environments using 1 or 2 devices. The most common models were support vector machine, random forest, and artificial neural network. Overall, classification accuracy ranged from 62% to 99.8%, although nearly 80% of studies achieved an overall accuracy above 85%. Conclusions: Machine-learning algorithms demonstrate good accuracy when predicting physical activity components; however, their application to free-living settings is currently uncertain.


2017 ◽  
Vol 4 (1) ◽  
pp. 56-74 ◽  
Author(s):  
Abinash Tripathy ◽  
Santanu Kumar Rath

Sentiment analysis helps to determine hidden intention of the concerned author of any topic and provides an evaluation report on the polarity of any document. The polarity may be positive, negative or neutral. It is observed that very often the data associated with the sentiment analysis consist of the feedback given by various specialists on any topic or product. Thus, the review may be categorized properly into any sort of class based on the polarity, in order to have a good knowledge about the product. This article proposes an approach to classify the review dataset made on basis of sentiment analysis into different polarity groups. Four machine learning algorithms viz., Naive Bayes (NB), Support Vector Machine (SVM), Random Forest, and Linear Discriminant Analysis (LDA) have been considered in this paper for classification process. The obtained result on values of accuracy of the algorithms are critically examined by using different performance parameters, applied on two different datasets.


Algorithms ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 201
Author(s):  
Charlyn Nayve Villavicencio ◽  
Julio Jerison Escudero Macrohon ◽  
Xavier Alphonse Inbaraj ◽  
Jyh-Horng Jeng ◽  
Jer-Guang Hsieh

Early diagnosis is crucial to prevent the development of a disease that may cause danger to human lives. COVID-19, which is a contagious disease that has mutated into several variants, has become a global pandemic that demands to be diagnosed as soon as possible. With the use of technology, available information concerning COVID-19 increases each day, and extracting useful information from massive data can be done through data mining. In this study, authors utilized several supervised machine learning algorithms in building a model to analyze and predict the presence of COVID-19 using the COVID-19 Symptoms and Presence dataset from Kaggle. J48 Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbors and Naïve Bayes algorithms were applied through WEKA machine learning software. Each model’s performance was evaluated using 10-fold cross validation and compared according to major accuracy measures, correctly or incorrectly classified instances, kappa, mean absolute error, and time taken to build the model. The results show that Support Vector Machine using Pearson VII universal kernel outweighs other algorithms by attaining 98.81% accuracy and a mean absolute error of 0.012.


2020 ◽  
Vol 12 (5) ◽  
pp. 41-51
Author(s):  
Shaimaa Mahmoud ◽  
◽  
Mahmoud Hussein ◽  
Arabi Keshk

Opinion mining in social networks data is considered as one of most important research areas because a large number of users interact with different topics on it. This paper discusses the problem of predicting future products rate according to users’ comments. Researchers interacted with this problem by using machine learning algorithms (e.g. Logistic Regression, Random Forest Regression, Support Vector Regression, Simple Linear Regression, Multiple Linear Regression, Polynomial Regression and Decision Tree). However, the accuracy of these techniques still needs to be improved. In this study, we introduce an approach for predicting future products rate using LR, RFR, and SVR. Our data set consists of tweets and its rate from 1:5. The main goal of our approach is improving the prediction accuracy about existing techniques. SVR can predict future product rate with a Mean Squared Error (MSE) of 0.4122, Linear Regression model predict with a Mean Squared Error of 0.4986 and Random Forest Regression can predict with a Mean Squared Error of 0.4770. This is better than the existing approaches accuracy.


Sign in / Sign up

Export Citation Format

Share Document