scholarly journals Modeling the Relationship between Rice Yield and Climate Variables Using Statistical and Machine Learning Techniques

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lasini Wickramasinghe ◽  
Rukmal Weliwatta ◽  
Piyal Ekanayake ◽  
Jeevani Jayasinghe

This paper presents the application of a multiple number of statistical methods and machine learning techniques to model the relationship between rice yield and climate variables of a major region in Sri Lanka, which contributes significantly to the country’s paddy harvest. Rainfall, temperature (minimum and maximum), evaporation, average wind speed (morning and evening), and sunshine hours are the climatic factors considered for modeling. Rice harvest and yield data over the last three decades and monthly climatic data were used to develop the prediction model by applying artificial neural networks (ANNs), support vector machine regression (SVMR), multiple linear regression (MLR), Gaussian process regression (GPR), power regression (PR), and robust regression (RR). The performance of each model was assessed in terms of the mean squared error (MSE), correlation coefficient (R), mean absolute percentage error (MAPE), root mean squared error ratio (RSR), BIAS value, and the Nash number, and it was found that the GPR-based model is the most accurate among them. Climate data collected until early 2019 (Maha season of year 2018) were used to develop the model, and an independent validation was performed by applying data of the Yala season of year 2019. The developed model can be used to forecast the future rice yield with very high accuracy.

2021 ◽  
Vol 13 (9) ◽  
pp. 1658
Author(s):  
Marina D’Este ◽  
Mario Elia ◽  
Vincenzo Giannico ◽  
Giuseppina Spano ◽  
Raffaele Lafortezza ◽  
...  

Fine dead fuel load is one of the most significant components of wildfires without which ignition would fail. Several studies have previously investigated 1-h fuel load using standard fuel parameters or site-specific fuel parameters estimated ad hoc for the landscape. On the one hand, these methods have a large margin of error, while on the other their production times and costs are high. In response to this gap, a set of models was developed combining multi-source remote sensing data, field data and machine learning techniques to quantitatively estimate fine dead fuel load and understand its determining factors. Therefore, the objectives of the study were to: (1) estimate 1-h fuel loads using remote sensing predictors and machine learning techniques; (2) evaluate the performance of each machine learning technique compared to traditional linear regression models; (3) assess the importance of each remote sensing predictor; and (4) map the 1-h fuel load in a pilot area of the Apulia region (southern Italy). In pursuit of the above, fine dead fuel load estimation was performed by the integration of field inventory data (251 plots), Synthetic Aperture Radar (SAR, Sentinel-1), optical (Sentinel-2), and Light Detection and Ranging (LIDAR) data applying three different algorithms: Multiple Linear regression (MLR), Random Forest (RF), and Support Vector Machine (SVM). Model performances were evaluated using Root Mean Squared Error (RMSE), Mean Squared Error (MSE), the coefficient of determination (R2) and Pearson’s correlation coefficient (r). The results showed that RF (RMSE: 0.09; MSE: 0.01; r: 0.71; R2: 0.50) had more predictive power compared to the other models, while SVM (RMSE: 0.10; MSE: 0.01; r: 0.63; R2: 0.39) and MLR (RMSE: 0.11; MSE: 0.01; r: 0.63; R2: 0.40) showed similar performances. LIDAR variables (Canopy Height Model and Canopy cover) were more important in fuel estimation than optical and radar variables. In fact, the results highlighted a positive relationship between 1-h fuel load and the presence of the tree component. Conversely, the geomorphological variables appeared to have lower predictive power. Overall, the 1-h fuel load map developed by the RF model can be a valuable tool to support decision making and can be used in regional wildfire risk management.


2020 ◽  
Vol 16 (1) ◽  
pp. 97-102
Author(s):  
Devi Wulandari ◽  
Agus Subekti

One of the common diabetes factors that people hear is that they consume too much or often consume sweet foods or drinks so that blood sugar in the human body increases. The times and increasingly sophisticated technology make it easier for someone to be able to predict a disease such as diabetes with machine learning techniques. Therefore, from the existing problems, a machine learning technique will be made in predicting glucose levels in diabetics. The aim is to predict glucose levels in diabetics and find the best algorithm from several comparison algorithms. The results of the experiments carried out by the support vector regression algorithm have a lower mean squared error value of 28.9480 compared to other comparative algorithms and visualize the error classification seen that Instance no 47 has a prediction of the highest plasma glucose value of 189.2305.


Author(s):  
Alessio Pagani ◽  
Abhinav Mehrotra ◽  
Mirco Musolesi

Understanding and learning the characteristics of network paths has been of particular interest for decades and has led to several successful applications. Such analysis becomes challenging for urban networks as their size and complexity are significantly higher compared to other networks. The state-of-the-art machine learning techniques allow us to detect hidden patterns and, thus, infer the features associated with them. However, very little is known about the impact on the performance of such predictive models by the use of different input representations. In this paper, we design and evaluate six different graph input representations (i.e. representations of the network paths), by considering the network’s topological and temporal characteristics, for being used as inputs for machine learning models to learn the behavior of urban network paths. The representations are validated and then tested with a real-world taxi journeys dataset predicting the tips of using a road network of New York. Our results demonstrate that the input representations that use temporal information help the model to achieve the highest accuracy (root mean-squared error of 1.42$).


2020 ◽  
Vol 17 (9) ◽  
pp. 4703-4708
Author(s):  
K. Anitha Kumari ◽  
Avinash Sharma ◽  
S. Nivethitha ◽  
V. Dharini ◽  
V. Sanjith ◽  
...  

Electrical appliances most commonly consist of two electrical devices, namely, electrical motors and transformers. Typically, electrical motors are normally used in all sort of industrial purposes. Failures of such motors results in serious problems, such as overheat, shut down and even burnt, in their host systems. Thus, more attention have to be paid in detecting the outliers. In a similar way, to avoid the unexpected power reliability problems and system damages, the prediction of the failures in the transformers is expected to quantify the impacts. By predicting the failures, the lifetime of the transformers increases and unnecessary accidents is avoided. Therefore, this paper presents the detection of the outliers in electrical motors and failures in transformers using supervised machine learning algorithms. Machine learning techniques such as Support Vector Machine (SVM), Random Forest (RF) and regression techniques like Support Vector Regression (SVR), Polynomial Regression (PR) are used to analyze the use cases of different motor specifications. Evaluation and the efficiency of findings are proved by considering accuracy, precision, F-measure, and recall for motors. Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE) and R-squared Error (R2) are considered as metrics for transformers. The proposed approach helps to identify the anomalies like vibration loss, copper loss and overheating in the industrial motor and to determine the abnormal functioning of the transformer that in turn leads to ascertain the lifetime. The proposed system analyses the behaviour of the electrical machines using the energy meter data and reports the outliers to users. It also analyses the abnormalities occurring in the transformer using the parameters involved in the degradation of the paper-oil insulation system and the voltage of operation as a whole leads to the predict the lifetime.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Author(s):  
B. A. Dattaram ◽  
N. Madhusudanan

Flight delay is a major issue faced by airline companies. Delay in the aircraft take off can lead to penalty and extra payment to airport authorities leading to revenue loss. The causes for delays can be weather, traffic queues or component issues. In this paper, we focus on the problem of delays due to component issues in the aircraft. In particular, this paper explores the analysis of aircraft delays based on health monitoring data from the aircraft. This paper analyzes and establishes the relationship between health monitoring data and the delay of the aircrafts using exploratory analytics, stochastic approaches and machine learning techniques.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomoaki Mameno ◽  
Masahiro Wada ◽  
Kazunori Nozaki ◽  
Toshihito Takahashi ◽  
Yoshitaka Tsujioka ◽  
...  

AbstractThe purpose of this retrospective cohort study was to create a model for predicting the onset of peri-implantitis by using machine learning methods and to clarify interactions between risk indicators. This study evaluated 254 implants, 127 with and 127 without peri-implantitis, from among 1408 implants with at least 4 years in function. Demographic data and parameters known to be risk factors for the development of peri-implantitis were analyzed with three models: logistic regression, support vector machines, and random forests (RF). As the results, RF had the highest performance in predicting the onset of peri-implantitis (AUC: 0.71, accuracy: 0.70, precision: 0.72, recall: 0.66, and f1-score: 0.69). The factor that had the most influence on prediction was implant functional time, followed by oral hygiene. In addition, PCR of more than 50% to 60%, smoking more than 3 cigarettes/day, KMW less than 2 mm, and the presence of less than two occlusal supports tended to be associated with an increased risk of peri-implantitis. Moreover, these risk indicators were not independent and had complex effects on each other. The results of this study suggest that peri-implantitis onset was predicted in 70% of cases, by RF which allows consideration of nonlinear relational data with complex interactions.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


Sign in / Sign up

Export Citation Format

Share Document