Preparation and Characterization of Silica-Coated ZnSe Nanowires with Thermal Stability and Photoluminescence

2007 ◽  
Vol 7 (12) ◽  
pp. 4494-4500 ◽  
Author(s):  
Shenglin Xiong ◽  
Baojuan Xi ◽  
Weizhi Wang ◽  
Hongyang Zhou ◽  
Shuyuan Zhang ◽  
...  

Silica-coated ZnSe nanowires with well-controlled the thickness of sheath in the range of 10–60 nm have been synthesized through a simple sol–gel process. The thickness of silica coating could be controlled through altering reaction parameters such as volume ratio of TEOS and ammonia. XRD, high-resolution TEM, X-ray photoelectron spectroscopy (XPS), Raman spectra, thermogravimetric analysis (TGA), and photoluminescence (PL) spectra were used to characterize the core/sheath nanostructures. Room-temperature PL measurements indicate these silica-coated ZnSe nanowires remarkably improve the PL intensity. Meanwhile, the thermal stability has been enhanced greatly, which is useful for their potential applications in advanced semiconductor devices.

Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 72 ◽  
Author(s):  
Simona Ortelli ◽  
Anna Luisa Costa

Organic–inorganic hybrid (ceramer) coatings were synthesized and deposited on the polyester nonwoven fabrics through the sol–gel process. This promoted the formation of an insulating barrier that was able to enhance the thermal stability and the hydrophobicity of fabrics. The hybrid phase is made of an organic network arising from different alkoxysilane precursors (trimethoxymethylalkoxysilane (TMEOS), 3-aminopropyl-trimethoxyalkoxysilane (APTMS), and tetraethylorthosilicate (TEOS)) and inorganic phase made of titanium dioxide TiO2 nanoparticles (NPs) and, in some cases, coated by P-based compound. The characterization of hybrid phase at liquid (size distribution and zeta potential of dispersed nanoparticles), dried state (crystalline phase, thermogravimetric (TGA), and Fourier transform infrared spectroscopic (FTIR) analyses), and on deposited coatings (contact angle, burn-out tests) aimed to find a correlation between the physicochemical properties of ceramer and functional performances of coated fabrics (thermal stability and hydrophobicity). The results showed that all ceramer formulations were able to improve the char formation after burn-out, in particular the highest thermal stability was obtained in the presence of TMEOS precursor and TiO2 NPs coated by P-based compound, which also provided the highest hydrophobicity. In conclusion, we presented an environmentally friendly and easily scalable process for the preparation of ceramer formulations capable of being formed into transparent, thermal-resistant, and hydrophobic fabric coatings, whose functions are extremely challenging for the textile market.


2006 ◽  
Vol 309-311 ◽  
pp. 65-68 ◽  
Author(s):  
Qian Peng ◽  
L. Ming ◽  
C.X. Jiang ◽  
Bo Feng ◽  
Shao Xing Qu ◽  
...  

Hollow hydroxyapatite microspheres (H-HAMs) with controlled characteristic mesoporous structure on the shell were successfully fabricated by using core template technology and sol-gel process. The fabrication of H-HAMs mainly included three distinct steps: the preparation of core template spheres of chitin by emulsifying chitin solution in oil, the formation of core-shell composite spheres of chitin-HA/chitin after a layer of chitin/HA solution coated on the surface of chitin core templates by means of a gelling process of chitin solution with the help of water in the cores, and the harvest of H-HAMs through a special sintering procedure to remove chitin. The size and shape of H-HAMs were chiefly determined by the size and morphology of core templates. The thickness of shells was easily controlled by altering water content of the starting template particles, and the characteristic mesoporous structure on the shell was related to the proportion of chitin in the chitin/HA composite solution and the sintering temperature. H-HAMs with characteristic mesoporous architecture on the shell have many potential applications such as used as a carrier for sustained release of drugs in the therapy of hard tissue system.


2004 ◽  
Vol 347 (1-3) ◽  
pp. 138-143 ◽  
Author(s):  
Hua-Kuo Chen ◽  
Hsin-Chin Hung ◽  
Thomas C.-K. Yang ◽  
Sea-Fue Wang
Keyword(s):  
Sol Gel ◽  

2011 ◽  
Vol 480-481 ◽  
pp. 1065-1069
Author(s):  
Bin Liu ◽  
Lin Wang ◽  
Yin Zhong Bu ◽  
Sheng Rong Yang ◽  
Jin Qing Wang

Titanium (Ti) and its alloys have been applied in orthopedics as one of the most popular biomedical metallic implant materials. In this work, to enhance the bioactivity, the surface of Ti alloy pre-modified by silane coupling agent and glutaraldehyde was covalently grafted with chitosan (CS) via biochemical multistep self-assembled method. Then, for the first time, the achieved surface was further immobilized with casein phosphopeptides (CPP), which are one group of bioactive peptides released from caseins in the digestive tract and can facilitate the calcium adsorption and usage, to form CS-CPP biocomposite coatings. The structure and composition of the fabricated coatings were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscopy (AFM). As the experimental results indicated, multi-step assembly was successfully performed, and the CS and CPP were assembled onto the Ti alloy surface orderly. It is anticipated that the Ti alloys modified by CS-CPP biocomposite coatings will find potential applications as implant materials in biomedical fields.


ChemInform ◽  
1989 ◽  
Vol 20 (9) ◽  
Author(s):  
T. HAMASAKI ◽  
K. EGUCHI ◽  
Y. KOYANAGI ◽  
A. MATSUMOTO ◽  
T. UTSUNOMIYA ◽  
...  

1991 ◽  
Vol 24 (6) ◽  
pp. 1431-1434 ◽  
Author(s):  
Timothy E. Long ◽  
Larry W. Kelts ◽  
S. Richard Turner ◽  
Jeffrey A. Wesson ◽  
Thomas H. Mourey

2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Marek Nocuń ◽  
Sławomir Kwaśny

AbstractIn our investigation, V doped SiO2/TiO2 thin films were prepared on glass substrates by dip coating sol-gel technique. Chemical composition of the samples was studied by X-ray photoelectron spectroscopy (XPS). Transmittance of the samples was characterized using UV-VIS spectrophotometry. Subsequently band-gap energy (Eg) was estimated for these films. Powders obtained from sols were characterized by FTIR spectroscopy. It was found that vanadium decreases optical band gap of SSiO2/TiO2 films.


2010 ◽  
Vol 1278 ◽  
Author(s):  
L.L. Díaz-Flores ◽  
A. S. López Rodríguez ◽  
P. SifuentesGallardo ◽  
M.A. Hernàndez Rivera ◽  
M.a Garnica Romo ◽  
...  

AbstractThis work is about the production of hybrid coatings of the system SiO2-PMMA (PMMA, polymethylmethacrylate). These materials have interesting mechanical and chemical properties useful for anticorrosive and wear resistance applications. SiO2-PMMA hybrids were obtained by the sol-gel traditional process, using tetraethylorthosilicate (TEOS) and methylmethacrylate (MMA) by Aldrich Co, as starting reagents. The SiO2:PMMA ratio was varied from 0:1 to about 1:1 at air atmosphere deposition. The coatings were obtained on acrylic sheets and silicon wafers. A diversity of coatings with chemical composition ranging from SiO2 and PMMA to obtain the SiO2-PMMA hybrids were obtained. Infrared (IR) and atomic force microscopy (AFM), were performed to determinate structural and morphological behavior.


Sign in / Sign up

Export Citation Format

Share Document