Formation of Ge Nanocrystals in SiO2 by Electron Beam Evaporation

2008 ◽  
Vol 8 (2) ◽  
pp. 818-822 ◽  
Author(s):  
P. Basa ◽  
G. Molnár ◽  
L. Dobos ◽  
B. Pécz ◽  
L. Tóth ◽  
...  

Ge nanocrystals were formed by electron beam evaporation on SiO2 covered Si substrates. The size and distribution of the nanocrystals were studied by atomic force microscopy, scanning electron microscopy and cross-sectional transmission electron microscopy. Dependencies of the nanocrystal size, of the nanocrystal surface coverage, and sheet resistance obtained by van der Pauw method of the Ge layer have been found on the evaporation time. The suggested growth mechanism for the formation of nanocrystals is the Volmer-Weber type. The sheet resistance exhibited a power dependence on the nanocrystal size.

2008 ◽  
Vol 8 (8) ◽  
pp. 4081-4085 ◽  
Author(s):  
Y. Batra ◽  
D. Kabiraj ◽  
D. Kanjilal

Germanium (Ge) nanoparticles have attracted a lot of attention due to their excellent optical properties. In this paper, we report on the formation of Ge nanoparticles embedded in GeO2 matrix prepared by electron beam evaporation and subsequent annealing. Transmission electron microscopy (TEM) studies clearly indicate the formation of Ge nanocrystals in the films annealed at 500 °C. Fourier transform infrared (FTIR) spectroscopic studies are carried out to verify the evolution of the structure after annealingat each stage. Micro-Raman analysis also confirms the formation of Ge nanoparticles in the annealed films. Development of Ge nanoparticles is also established by photoluminescence (PL) analysis. Surface morphology study is carried out by atomic force microscopy (AFM). It shows the evolution of granular structure of the films with increasing annealing temperature.


1993 ◽  
Vol 311 ◽  
Author(s):  
Lin Zhang ◽  
Douglas G. Ivey

ABSTRACTSilicide formation through deposition of Ni onto hot Si substrates has been investigated. Ni was deposited onto <100> oriented Si wafers, which were heated up to 300°C, by e-beam evaporation under a vacuum of <2x10-6 Torr. The deposition rates were varied from 0.1 nm/s to 6 nm/s. The samples were then examined by both cross sectional and plan view transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy and electron diffraction. The experimental results are discussed in terms of a new kinetic model.


2008 ◽  
Vol 381-382 ◽  
pp. 525-528 ◽  
Author(s):  
B.L. Wang ◽  
Han Huang ◽  
Jin Zou ◽  
Li Bo Zhou

Silicon (100) substrates machined by chemo-mechanical-grinding (CMG) and chemicalmechanical- polishing (CMP) were investigated using atomic force microscopy, cross-sectional transmission electron microscopy and nanoindentation. It was found that the substrate surface after CMG was slightly better than machined by CMP in terms of roughness. The transmission electron microscopy analysis showed that the CMG-generated subsurface was defect-free, but the CMP specimen had a crystalline layer of about 4 nm in thickness on the top of the silicon lattice as evidenced by the extra diffraction spots. Nanoindentation results indicated that there exists a slight difference in mechanical properties between the CMG and CMP machined substrates.


1995 ◽  
Vol 10 (1) ◽  
pp. 26-33 ◽  
Author(s):  
L.M. Porter ◽  
R.F. Davis ◽  
J.S. Bow ◽  
M.J. Kim ◽  
R.W. Carpenter

Thin films (4–1000 Å) of Co were deposited onto n-type 6H-SiC(0001) wafers by UHV electron beam evaporation. The chemistry, microstructure, and electrical properties were determined using x-ray photoelectron spectroscopy, high resolution transmission electron microscopy, and I-V and C-V measurements, respectively. The as-deposited contacts exhibited excellent rectifying behavior with low ideality factors and leakage currents of n < 1.06 and 2.0 × 10−8 A/cm2 at −10 V, respectively. During annealing at 1000 °C for 2 min, significant reaction occurred resulting in the formation of CoSi and graphite. These annealed contacts exhibited ohmic-like character, which is believed to be due to defects created in the interface region.


Author(s):  
V.P. Dravid ◽  
M.R. Notis ◽  
C.E. Lyman ◽  
A. Revcolevschi

Transmission electron microscopy (TEM), incorporating imaging, diffraction and spectrometry has contributed significantly to the understanding of the structure of crystalline interfaces. Traditionally, planar interfaces are investigated using cross-sectional views (electron beam parallel to the interface) of the specimen. However, plan-view TEM (PVTEM) has recently emerged as a viable and supplementary technique to cross-sectional TEM (XTEM). PVTEM enjoys certain definite advantages over XTEM. One important consideration is that the interface in a PV specimen is buried (sandwiched between two crystals) and is expected to be free of artefacts induced by specimen preparation procedures. Moreover, many multilayer electronic materials are amenable to PVTEM because they can be easily backthinned to electron transparency with virtually no damage to the internal interfaces. PV specimens clearly contain much larger interface area than XTEM specimens, which may be of great significance when statistics are considered. Apart from these considerations PVTEM studies can also offer specific information about the interface not always possible in XTEM. In this brief communication we report some of our results on imaging, diffraction and spectrometry of interfaces obtained by viewing the interfaces in the PV mode.


1991 ◽  
Vol 237 ◽  
Author(s):  
T. Inoue ◽  
T. Ohsuna ◽  
Y. Yamamoto ◽  
Y. Sakurai ◽  
L. Luo ◽  
...  

ABSTRACTCerium dioxide (CeO2) layers epitaxially grown on (100), (111) and (110) silicon substrates by electron beam evaporation in an ultra-high vacuum were investigated. CeO2 layers on Si (111) substrates were proved to be epitaxially grown at the substrate temperature above 200°C, and had considerably good crystalline quality. On the other hand, CeO2 layers grown on Si (100) at 800°C consisted of more than 98% volume fraction of (110) component. Cross-sectional high resolution transmission electron microscopy and selected area electron diffraction verified clearly the above crystallography orientation and that the <100> direction in the CeO2(110) plane was parallel with the <110> direction in the Si (100) plane. The cross-sectional lattice image confirmed the existence of ∼ 6 nm-thick intermediate amorphous layer between the CeO2 layer and the Si substrate.


1991 ◽  
Vol 220 ◽  
Author(s):  
P. M. Adams ◽  
R. C. Bowman ◽  
V. Arbet-Engols ◽  
K. L. Wang ◽  
C. C. Ahn

ABSTRACTP-I-N diodes whose intrinsic region consists of strained layer superlattices (SLS), separated by 40 nm Si spacers, have been grown by MBE on Si substrates with <100>, <110>, and <111> orientations. These structures have been characterized by x-ray diffraction (XRD) and cross-sectional transmission electron microscopy (XTEM). The dual periodicities in these structures produced unique XRD effects and the quality was highly dependent on substrate orientation. The <100> sample was in general free of defects, whereas the <110> and <111> specimens contained significant numbers of twins and dislocations.


Sign in / Sign up

Export Citation Format

Share Document