Influence of Incorporated Barium Ion on the Physio-Chemical Properties of Zinc Oxide Nanodisks Synthesized via a Sonochemical Process

2020 ◽  
Vol 20 (9) ◽  
pp. 5452-5457
Author(s):  
Suresh Sagadevan ◽  
S. Vennila ◽  
S. N. Suraiya Begum ◽  
Yasmin Abdul Wahab ◽  
Nor Aliya Binti Hamizi ◽  
...  

Nanostructure materials are of interest in last few decades due to their unique size-dependent physio-chemical properties. In this paper, zinc oxide (ZnO) and barium doped ZnO nanodisks (NDs) were synthesized using sonochemical method and characterized by various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), UV-vis absorption and dielectric measurements. The XRD and FTIR studies confirm the crystalline nature of ZnO NDs, and the average crystallite size was found to be ~25 nm for pure ZnO and ~22 nm for Ba doped ZnO NDs. SEM study confirmed the spherical shaped ZnO NDs with average sizes in the range of 20–30 nm. The maximum absorbance was obtained in the 200–500 nm regions with a prominent peak absorbance were observed by UV-vis spectra. The corresponding band gap for ZnO NDs and Ba doped ZnO NDs were calculated using Tauc’s plot and was found to be 3.12 and 3.04, respectively. The conductivity and dielectric measurements as a function of frequency have been studied.

Proceedings ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 39
Author(s):  
Zahira. El khalidi ◽  
Maryam Siadat ◽  
Elisabetta. Comini ◽  
Salah. Fadili ◽  
Philippe. Thevenin

Chemical gas sensors were studied long ago and nowadays, for the advantageous role they provide to the environment, health condition monitoring and protection. The recent studies focus on the semiconductors sensing abilities, especially of non toxic and low cost compounds. The present work describes the steps to elaborate and perform a chemical sensor using intrinsic and doped semiconductor zinc oxide. First, we synthesized pure oxide using zinc powder, then, two other samples were established where we introduced the same doping percentage of Al and Sn respectively. Using low cost spray pyrolysis, and respecting the same conditions of preparation. The obtained samples were then characterized by X Ray Diffraction (XRD) that revealed the hexagonal wurzite structure and higher crystallite density towards the direction (002), besides the appearance of the vibration modes related to zinc oxide, confirmed by Raman spectroscopy. SEM spectroscopy showed that the surface morphology is ideal for oxidizing/reduction reactions, due to the porous structure and the low grain sizes, especially observed for the sample Sn doped ZnO. The gas testing confirms these predictions showing that the highest response is related to Sn doped ZnO compared to ZnO and followed by Al doped ZnO. The films exhibited responses towards: CO, acetone, methanol, H2, ammonia and NO2. The concentrations were varied from 10 to 500 ppm and the working temperatures from 250 to 500°C, the optimal working temperatures were 350 and 400 °C. Sn doped ZnO showed a high response towards H2 gas target, with a sensitivity reaching 200 at 500 ppm, for 400 °C.


ISRN Ceramics ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Bahman Nasiri-Tabrizi ◽  
Abbas Fahami

Fluorapatite-zinc oxide (FAp-ZnO) composite nanopowders were successfully prepared via mechanochemical process. Characterization of the products was carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) analysis, energy dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (FE-SEM) techniques. Results revealed that in the absence of ZnO which produced by hydrothermal method, the single-phase FAp had high-crystalline structure with appropriate morphological features. Furthermore, after 5 h of milling in the presence of 5 wt.% ZnO, FAp-5 wt.% ZnO, composite nanopowders with no impurity phase was obtained. Structural studies illustrated that the milling up to 5 h was not accompanied by a remarkable change in the structural features. Moreover, the gained composite powders presented an average crystallite size of about 40 nm for FAp. The FE-SEM observations indicated that the experimental outcome had a cluster-like structure which consisted of several small particles. Finally, results propose a new approach to prepare commercial amounts of novel FAp-based composite nanopowders with high quality and suitable structural and morphological features.


Author(s):  
M. Mansouri ◽  
A. Hosseinvand ◽  
T. Kikhavani ◽  
N. Setareshenas

Abstract In this study, photo-catalytic degradation of methyl orange (MO) azo dye was examined by undoped and Ce2O3/ CuO/ N doped ZnO nanoparticles stabilized on γAl2O3. Highest photo-catalytic activity was observed for the N-doped 10 wt. % ZnO-γAl2O3 sample. One of the optimal points with the complete MO decomposition was determined at an initial concentration of 8.25 ppm, pH 3.25, catalyst loading of 0.36 g/L and 12.56 W UV-light irradiation after 120 min. Physical and chemical properties of materials were investigated by X-ray diffraction analysis (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) and UV–visible diffuse reflectance spectroscopy (DRS) method. The experimental data were best fitted by a Langmuir-Hinshelwood approach photo-catalysis developed kinetic reaction rate in the form of $- r = 0.2797\, {I^{0.5}}\, {[Cat.]^{0.5}}\, \, [Dye]{\text{ }}/\, \, \, 1 + 0.1079\, {[Dye]_0}\, + \, 0.4086\, {I^{0.5}}\, {[Cat.]^{0.5}}$.


2015 ◽  
Vol 7 (2) ◽  
pp. 39 ◽  
Author(s):  
Amjed Oda ◽  
Hameed Ali ◽  
Abbas Lafta ◽  
Hussein Esmael ◽  
Ali Jameel ◽  
...  

The current work involves modification of zinc oxide by doping silver, this was achieved by photodeposition method. Modified zinc oxide was investigated using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Both of ZnO and Ag doped ZnO was fabricated on a cotton texture. The photocatalytic activity of these materials was investigated by following the decolorization of congo red from simulated industrial wastewater. The decolorization of congo red over fabricated-ZnO-Ag was more efficient in comparison with non- fabricated catalysts. Different reaction parameters were undertaken including the effect of pH of the solution, irradiation time and the effect of light intensity. Complete dye removal over fabricated materials took three hours while it took 4.5 for non-fabricated materials.


2013 ◽  
Vol 12 (01) ◽  
pp. 1350007
Author(s):  
V. MARY TERESITA ◽  
V. JESEENTHARANI ◽  
B. AVILA JOSEPHINE ◽  
S. ARUL ANTONY

Properties of nanoscale materials are very interesting and these are either comparable to or superior to those of bulk. These materials are interesting due to their exciting size dependent optical, electronic, magnetic, thermal, mechanical and chemical properties. Different mole ratios of nanostructured mixed metal oxides of LaCo x Fe 1-x O 3-δ (x = 0 to 1) were prepared by the sol–gel method by varying the mole ratios of iron and cobalt substrates. The compounds were sintered for 700°C in the tubular furnace for 8 h. The purity of the compounds was analyzed by TG-DTA. The compounds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM) studies were employed to study the structural phases, vibrational frequencies, surface morphology of the highest humidity sensing compounds.


2017 ◽  
Vol 728 ◽  
pp. 215-220 ◽  
Author(s):  
Natpasit Chaithanatkun ◽  
Korakot Onlaor ◽  
Benchapol Tunhoo

In the present work, the precipitation method was applied to prepare zinc oxide nanoparticles in the presence of zinc nitrate and potassium hydroxide as precursor solutions. The influence of annealing temperature on the properties such as structural and morphological of zinc oxide nanoparticles were performed by X-ray diffraction technique, field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy, and Raman spectroscopy. The effects of annealing temperature on the crystallite size of zinc oxide nanoparticles have investigated. The XRD results represented that the zinc oxide nanoparticles exhibits high crystallinity of hexagonal wurtzite crystal structure. The average crystallite size of nanoparticles increased from 18 to 31 nm when the annealing temperature had increased. The morphology images show that the nanoparticles in this work were spherical in shape. Raman and FT-IR spectra confirm that the quality of Zn-O vibrational mode is stronger at higher annealing temperature.


2013 ◽  
Vol 770 ◽  
pp. 354-357
Author(s):  
Krisana Chongsri ◽  
N. Wongpisutpaisan ◽  
A. Sungthong ◽  
Naratip Vittayakorn ◽  
Wisanu Pecharapa

Al-doped ZnO nanoparticles were synthesized by sonochemical method from zinc acetate dehydrate and aluminum acetate as starting precursors. The deionized (DI) water was selected as the solvent. Sonication of the precursor was performed by a Sonics Model VCX 750 for 30 minutes until precipitated product was finally obtained. The as-precipitated powders were calcined at different temperature range of 550-1100 °C for 2 hr. For all samples, their crystal structures were investigated by X-ray diffraction (XRD) and surface morphologies were observed by scanning electron microscope (SEM). The XRD results revealed that, the purity of as-synthesized powders increases when the calcination temperature increases. Moreover, it is noticed that the AlZnO partial peaks will appear when the as-synthesized powders were calcined at 800 – 1000 °C. In addition, SEM micrographs show the increase of agglomeration and the particles when the calcination temperature increases.


2018 ◽  
Vol 24 (8) ◽  
pp. 5636-5639
Author(s):  
P Swapna ◽  
S. Venkatramana Reddy

Pristine and (Co, Al) co-doped ZnO nanoparticles have been successfully synthesized by chemical coprecipitation method without using capping agent and annealed in the furnace at 500 °C for one hour. The aluminium concentration is fixed at 5 mol% and cobalt concentration is increasing from 1 to 3 mol%. X-ray diffraction results shows that all the samples possess hexagonal wurtzite structure of ZnO having no secondary phase after adding of aluminium and cobalt, which may be ascribed to the incorporation of cobalt an aluminium ions into the Zinc oxide host lattice site rather than interstitial. Non-uniform spherical nanoparticles were observed through SEM and the elemental analysis is determined through Energy dispersive spectroscopy (EDS). Raman spectrum shows that the prominent peak appeared at 530 cm−1, for co-doped samples which is attributed to the local vibration mode corresponds to cobalt bound with the donor defects.


Cerâmica ◽  
2015 ◽  
Vol 61 (360) ◽  
pp. 457-461 ◽  
Author(s):  
V. D. Mote ◽  
Y. Purushotham ◽  
R. S. Shinde ◽  
S. D. Salunke ◽  
B. N. Dole

Abstract Yttrium-doped ZnO nanoparticles were synthesized by co-precipitation method to investigate structural, optical and antibacterial properties. X-ray diffraction analysis confirms hexagonal (wurtzite) structure with average crystallite size between 16 and 30 nm. Optical energy band gap decreaseswith increasing Y-doping concentration. ZnO nanoparticles were found to be highly effective against S. aureus and Y-doped ZnO nanoparticles against E. coli, B. subtilis and S. typhi. Undoped and Y-doped ZnO nanoparticles are good inorganic antimicrobial agents and can be synthesized by cost effective co-precipitation method.


2016 ◽  
Vol 34 (2) ◽  
pp. 451-459 ◽  
Author(s):  
Raminder Preet Pal Singh ◽  
I.S. Hudiara ◽  
Shashi Bhushan Rana

AbstractIn the present study, pure ZnO and Fe-doped ZnO (Zn0.97Fe0.03O) nanoparticles were synthesized by simple coprecipitation method with zinc acetate, ferric nitrate and sodium hydroxide precursors. Pure ZnO and Fe-doped ZnO were further calcined at 450 °C, 600 °C and 750 °C for 2 h. The structural, morphological and optical properties of the samples were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and UV-Vis absorption spectroscopy. The X-ray diffraction studies revealed that the as-synthesized pure and doped ZnO nanoparticles have hexagonal wurtzite structure. The average crystallite size was calculated using Debye-Scherrer’s formula. The particle size was found to be in nano range and increased with an increase in calcination temperature. SEM micrographs confirmed the formation of spherical nanoparticles. Elemental compositions of various elements in pure and doped ZnO nanoparticles were determined by EDX spectroscopy. UV-Vis absorption spectra showed red shift (decrease in band gap) with increasing calcination temperature. Effect of calcination on the magnetic properties of Fe-doped ZnO sample was also studied using vibrating sample magnetometer (VSM). M-H curves at room temperature revealed that coercivity and remanent polarization increase with an increase in calcination temperature from 450 °C to 750 °C, whereas reverse effect was observed for magnetization saturation.


Sign in / Sign up

Export Citation Format

Share Document