Laponite-Mediated Copper Metallization by Palladium Intercalation

2021 ◽  
Vol 21 (8) ◽  
pp. 4457-4461
Author(s):  
Jeong-Soo Kim ◽  
Dongchul Suh

An alternative catalytic method was employed using the reduction of Pd ions on the surface of cetyltrimethylammonium bromide (CTAB) treated laponite to initiate the electroless plating of copper; the deposition features of the Pd nanoparticles produced were investigated in detail. Results indicated intercalation and reduction of Pd nanoparticles occurred at room temperature and involved interaction between the laponite and the cetyltrimethylammonium cationic templates. Organic species and amount on laponite were optimized to adjust silicate platelet interlayer distances and platelet organophilic properties. Intercalation of Pd nanoparticles occurred between the magnesium silicate layers of laponite and this was dependent on pre-treatment and impregnation times. As impregnation is a method of producing heterogeneous catalysts, we considered Pd nanoparticles on laponite templates could catalyze the electroless deposition of Cu to initiate metallization. Cu films fabricated on laponite templates exhibited excellent surface roughness (˜1.7 nm) and low resistivity (˜3.42 μΩ). The devised approach enabled the facile formation of a network suitable for Cu metallization without causing substrate damage and produced metal surfaces with excellent flatness and resistivity.

1999 ◽  
Vol 564 ◽  
Author(s):  
A. R. Ivanova ◽  
C. J. Galewski ◽  
C. A. Sans ◽  
T. E. Seidel ◽  
S. Grunow ◽  
...  

AbstractAmorphous tungsten nitride (WNx) is a promising diffusion barrier for extending Cu metallization beyond 0.18 μm. This study evaluates the barrier performance, adhesion, and step coverage of PECVD WN 0.5 integrated with a CVD Cu seed layer. The WN0.5 films exhibit amorphous structure with 33% bottom and side-wall step coverage in 0.14 μm wide structures with 9:1 aspect ratio. The potential of 50 Å WN0.5 as an effective Cu barrier is shown by the absence of Secco etch-pits in the Si substrate after a 30 min anneal at 500°C. When deposited on PECVD WN0.5 the CVD Cu films exhibit uniform nucleation, and as deposited resistivity of 2.5 μΩ-cm. Step coverage of the CVD Cu is better than 95% in 0.14 μm structures. Adhesion exceeding epoxy strength of the CVD Cu seed layer even to air-exposed WN0.5 is demonstrated using stud-pull adhesion tests.


2015 ◽  
Vol 112 (26) ◽  
pp. 7903-7908 ◽  
Author(s):  
Chi Ming Yim ◽  
Chi L. Pang ◽  
Diego R. Hermoso ◽  
Coinneach M. Dover ◽  
Christopher A. Muryn ◽  
...  

Supported metal nanoparticles form the basis of heterogeneous catalysts. Above a certain nanoparticle size, it is generally assumed that adsorbates bond in an identical fashion as on a semiinfinite crystal. This assumption has allowed the database on metal single crystals accumulated over the past 40 years to be used to model heterogeneous catalysts. Using a surface science approach to CO adsorption on supported Pd nanoparticles, we show that this assumption may be flawed. Near-edge X-ray absorption fine structure measurements, isolated to one nanoparticle, show that CO bonds upright on the nanoparticle top facets as expected from single-crystal data. However, the CO lateral registry differs from the single crystal. Our calculations indicate that this is caused by the strain on the nanoparticle, induced by carpet growth across the substrate step edges. This strain also weakens the CO–metal bond, which will reduce the energy barrier for catalytic reactions, including CO oxidation.


2017 ◽  
Author(s):  
P. Gomasang ◽  
T. Abe ◽  
K. Kawahara ◽  
Y. Wasai ◽  
N. Nabatova-Gabain ◽  
...  

2004 ◽  
Vol 116 (11) ◽  
pp. 1421-1423 ◽  
Author(s):  
Jun Huang ◽  
Tao Jiang ◽  
Haixiang Gao ◽  
Buxing Han ◽  
Zhimin Liu ◽  
...  

2020 ◽  
Vol 16 ◽  
pp. 2477-2483 ◽  
Author(s):  
Tony Jin ◽  
Malickah Hicks ◽  
Davis Kurdyla ◽  
Sabahudin Hrapovic ◽  
Edmond Lam ◽  
...  

In this report, chitin and chitosan nanocrystals were used as biomass-based supports for Pd nanoparticles (NPs) used as a heterogeneous catalyst for the Heck coupling reaction. By using a one-pot fabrication method, a Pd salt precursor was directly reduced and deposited onto these nanocrystal catalysts. Characterization of these nanocomposites showed disperse Pd NPs on the surfaces of the chitinous nanocrystals. Heck coupling model reactions revealed full product yield in relatively benign conditions, outcompeting the use of other catalysts supported on biomass-based nanomaterials, including cellulose nanocrystals. These initial results show the potential for using chitinous nanomaterials as effective catalyst supports in cross-coupling reactions.


2019 ◽  
Vol 7 (6) ◽  
pp. 2660-2666 ◽  
Author(s):  
Pengyao Ju ◽  
Shujie Wu ◽  
Qing Su ◽  
Xiaodong Li ◽  
Ziqian Liu ◽  
...  

Salen–porphyrin-based CMP supported Pd nanoparticles were employed as high-performance heterogeneous catalysts for aqueous Suzuki–Miyaura and Heck–Mizoroki coupling reactions.


2020 ◽  
Vol 6 (3) ◽  
pp. 57
Author(s):  
Maria Cristina Ligi ◽  
Anna Flis ◽  
Giacomo Biagiotti ◽  
Giulia Serrano ◽  
K. Michał Pietrusiewicz ◽  
...  

Oxidized multiwalled carbon nanotubes were modified anchoring phosphine oxides and used as heterogeneous catalysts. A proper substitution of the phosphine oxides allowed the use of the Tour reaction and the nitrene cycloaddition to obtain functionalized carbon nanotubes (CNT) with a loading up to 0.73 mmol/g of material. The catalysts proved efficient in Wittig reactions, Mitsunobu reactions, and Staudinger ligations. Furthermore, the phosphorus decorated CNT were used to produce nanocomposite with Pd nanoparticles able to catalyze Heck reactions.


2009 ◽  
Vol 81 (11) ◽  
pp. 2013-2023 ◽  
Author(s):  
Edward A. Karakhanov ◽  
Anton L. Maximov ◽  
Vitaliy A. Skorkin ◽  
Anna V. Zolotukhina ◽  
Alexey S. Smerdov ◽  
...  

Nanostructured regular materials based on dendrimers bound by covalent or coordination bonds between surface functional groups were synthesized. Bimetallic Cu(II) and Pd(II) metal complexes with nitrile-based dendrimers demonstrated high activity in Wacker oxidation of terminal alkenes along with good selectivity for methylketone formation. New heterogeneous catalysts based on Pd nanoparticles and cross-linked polypropylene imine (PPI) and polyamidoamine (PAMAM) dendrimers were prepared and examined for selective hydrogenation of unsaturated compounds.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 621
Author(s):  
Ali Zebardasti ◽  
Mohammad G. Dekamin ◽  
Esmail Doustkhah

Hybridisation of mesoporous organosilicas (MO) to reinforce the surface capability in adsorption and stabilisation of noble metal nanoparticles is of great attention in generating/supporting noble metal within their matrices and transforming them into efficient heterogeneous catalysts. Here, we used a unique hybrid of organic-inorganic mesoporous silica in which pore profile pattern was similar to the well-known mesoporous silica, SBA-15 for catalysis. This hybrid mesoporous organosilica was further engaged as a support in the synthesis and stabilisation of Pd nanoparticles on its surface, and then, the obtained Pd-supported MO was employed as a heterogeneous green catalyst in the conversion of aqueous p-nitrophenol (PNP) to p-aminophenol (PAP) at room temperature with efficient recyclability.


Sign in / Sign up

Export Citation Format

Share Document