Preparing and Applying Silver Nanoparticles in Conductive Ink and Inkjet Painting

2021 ◽  
Vol 21 (12) ◽  
pp. 5979-5986
Author(s):  
Gui Bing Hong ◽  
Yi Hua Luo ◽  
Kai Jen Chuang ◽  
Chih Ming Ma

Noble metal nanoparticles have special properties in optical, electronic, and physical chemistry due to their high surface area and volume. With the development of electronic printing technology, inkjet printing has gradually replaced traditional spin coating and blade coating, since it leads to more material savings and a faster batch production, and the pattern can be easily designed by a computer. In this study, Ag nanoparticles were prepared by a chemical reduction method. Non-toxic, environment-friendly agents were selected to fabricate a single-shape, uniform-size, crystal-form, and monodisperse product. The effects of the reducing agent ratio and the stabilizer ratio on the size, shape, and stability of the nanoparticles are discussed. The silver nanoparticles were characterized by an ultraviolet-visible spectrophotometer (UV-vis) and a transmission electron microscope (TEM). In addition, in order to prepare conductive ink that can stably disperse for a long time and that can be applied to inkjet printing on a PET flexible substrate at a lower sintering temperature, a sintering agent and a commercial surfactant were added. The experimental results show that the best addition ratio of the precursor to the reducing agent and the stabilizer is 1:6:1. The conductive silver ink was printed and treated by a70 mM NaCl solution, and the electric resistivity was 5.17×10−4 Ω· cm.

Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 171
Author(s):  
Gui Bing Hong ◽  
Yi Hua Luo ◽  
Kai Jen Chuang ◽  
Hsiu Yueh Cheng ◽  
Kai Chau Chang ◽  
...  

In the scientific industry, sustainable nanotechnology has attracted great attention and has been successful in facilitating solutions to challenges presented in various fields. For the present work, silver nanoparticles (AgNPs) were prepared using a chemical reduction synthesis method. Then, a low-temperature sintering process was deployed to obtain an Ag-conductive ink preparation which could be applied to a flexible substrate. The size and shape of the AgNPs were characterized by ultraviolet–visible spectrophotometry (UV-Vis) and transmission electron microscopy (TEM). The experiments indicated that the size and agglomeration of the AgNPs could be well controlled by varying the reaction time, reaction temperature, and pH value. The rate of nanoparticle generation was the highest when the reaction temperature was 100 °C within the 40 min reaction time, achieving the most satisfactorily dispersed nanoparticles and nanoballs with an average size of 60.25 nm at a pH value of 8. Moreover, the electrical resistivity of the obtained Ag-conductive ink is controllable, under the optimal sintering temperature and time (85 °C for 5 min), leading to an optimal electrical resistivity of 9.9 × 10−6 Ω cm. The results obtained in this study, considering AgNPs and Ag-conductive ink, may also be extended to other metals in future research.


2019 ◽  
Vol 43 (6) ◽  
pp. 2797-2803 ◽  
Author(s):  
Yueyue Hao ◽  
Jian Gao ◽  
Zesheng Xu ◽  
Nan Zhang ◽  
Jing Luo ◽  
...  

Carboxyl-terminated hyperbranched polymer-stabilized silver nanoparticles were synthesized in the aqueous phase and used to prepare a printable conductive ink.


ChemCatChem ◽  
2014 ◽  
Vol 7 (3) ◽  
pp. 422-426 ◽  
Author(s):  
Nishanth K. Gopalan ◽  
Shupeng Zhang ◽  
Donghe Du ◽  
Pengcheng Li ◽  
Jianyong Ouyang

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1269 ◽  
Author(s):  
Ahmed Hashem ◽  
Hanaa Abuzeid ◽  
Martin Winter ◽  
Jie Li ◽  
Christian Julien

With the aim to reduce the entire cost of lithium-ion batteries and to diminish the environmental impact, the extract of broccoli is used as a strong benign reducing agent for potassium permanganate to synthesize α-KyMnO2 cathode material with pure nanostructured phase. Material purity is confirmed by X-ray powder diffraction and thermogravimetric analyses. Images of transmission electron microscopy show samples with a spider-net shape consisting of very fine interconnected nanoneedles. The nanostructure is characterized by crystallite of 4.4 nm in diameter and large surface area of 160.7 m2 g−1. The material delivers an initial capacity of 211 mAh g−1 with high Coulombic efficiency of 99% and 82% capacity retention after 100 cycles. Thus, α-KyMnO2 synthesized via a green process exhibits very promising electrochemical performance in terms of initial capacity, cycling stability and rate capability.


2019 ◽  
Vol 48 (8) ◽  
pp. 2692-2700 ◽  
Author(s):  
Hui-Tao Fan ◽  
Xue-Guo Liu ◽  
Xiao-Jing Xing ◽  
Bo Li ◽  
Kun Wang ◽  
...  

An Ag–OMS-C nanocomposite with a high surface area was proposed, and its potential application for catalytic activity was highlighted.


Author(s):  
Fernanda Pilaquinga ◽  
Jeroni Morey ◽  
Miguel Vivas-Rodríguez ◽  
Gabriela Yánez-Jácome ◽  
Lenys Fernández ◽  
...  

: Mercury (Hg) contamination is a problem that currently affects not only the environment but also human health. Various types of commercial adsorbents have been proposed for its removal. Silver is a noble element that can chemically adsorb mercury, forming amalgams. However, its use as an adsorbent presents the following disadvantages: rapid surface saturation and high cost. These limitations can easily be overcome using silver nanoparticles (AgNPs). With a size of less than 100 nm, their reactivity, their high surface area, and a minimal amount of metallic precursor, they are ideal candidates for mercury removal. This study presents a compendium of the use of conventional mercury adsorbents and the use of AgNPs for their colorimetric detection and removal in different matrices, in both the aqueous and gas phases of Hg0 and Hg2+ . In addition, the number of patents available in each case is analyzed. AgNPs as colorimetric sensors allow for quick detection of mercury in-situ. Additionally, the adsorption systems formed with AgNPs, allow for the obtaining of stable and chemically inert complexes, facilitating their recycling. It is concluded that the use of AgNPs is particularly efficient for the detection and removal of mercury, presenting a removal percentage of over 90%. As a result of the patents analyzed, its use is perfectly applicable at an industrial level.


2012 ◽  
Vol 12 (2) ◽  
pp. 55-60 ◽  
Author(s):  
Unai Balda Irurzuna ◽  
Victoria Dutschka ◽  
Alfredo Calvimontesb ◽  
Remko Akkermana

Abstract Micro-sized lines were inkjet printed on glass fibre fabrics using different droplet spacing. A conductive ink containing silver nanoparticles was used in this study. Glass fibre fabrics were differently pre-treated to avoid spontaneous spreading of the ink dispersion. The sample topography was examined using scanning electron, optical and confocal microscopy with a chromatic sensor. Printability conditions were discussed based on the results of topographic characterization and wettability measurements.


2010 ◽  
Vol 22 (9) ◽  
pp. 2835-2841 ◽  
Author(s):  
Liang Wang ◽  
Hongjing Wang ◽  
Yoshihiro Nemoto ◽  
Yusuke Yamauchi

2005 ◽  
Vol 20 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Hangrong Chen ◽  
Xin Michael Wang ◽  
Jianlin Shia ◽  
Ping Xiao ◽  
Dongsheng Yan

A novel structural mesoporous alumina (40 mol%)/yttrium doped zirconia nanocrystalline composite has been synthesized by a solvothermal process using ethanol and ethylene glycol as a co-solvent. X-ray diffraction, thermogravimetry/differential scanning calorimetry, Fourier transform infrared, transmission electron microscopy, and nitrogen adsorption are used for the structural characterization. This novel mesoporous alumina/zirconia nanocomposite presents nanocrystalline zirconia particles with a uniform size less than 5 nm surrounded by alumina, forming a kind of core-shell structure after calcined at 800 °C. The mesostructural composite has high surface area (higher than 250 m2/g) and a narrow pore-size distribution of about 3.2 nm throughout the composite sample. The uniformly distributed nanocrystalline zirconia particles and the surrounding wormlike alumina framework act as the inorganic wall for the mesopores.


Sign in / Sign up

Export Citation Format

Share Document