Doping and Annealing Effects on the Optical Bandgap of the Nickel Doped Copper Oxide Thin Films

2021 ◽  
Vol 16 (2) ◽  
pp. 243-248
Author(s):  
Fatmah S. Bahabri ◽  
Alaa Y. Mahmoud ◽  
Wafa A. Alghameeti

In this work, we study the optical properties of the Nickel doped cupric oxide Ni-CuO thin films with Ni various doping concentrations (0, 20, 30, 50, 70, and 80%), at two different annealing temperatures; 200 and 400 °C. The absorbance and optical bandgap for the films are calculated and compared. We find that all films exhibit clear peaks in the visible range, with the increase in the absorptivity via increasing both annealing and Ni concentration. We also find that the annealing affects the shape of the absorbance peaks to be narrowed and blue shifted. Investigation on the direct bandgap energy shows that all films exhibit large direct gap; ranging from 3.87 to 4.01 eV. For non-annealed films, direct bandgap increases with increasing the Ni concentration, while for the annealed samples, the direct bandgap generally decreases by annealing, and with increasing the doping concentration. For the indirect bandgap analysis, the calculated values of the bandgap are ranging from 0.62 to 1.96 eV. We find that for non-annealed films, the indirect bandgap increases with increasing the doping concentration, while after annealing, the bandgap decreases with increasing the doping concentration for the annealing at 200 and 400 °C, with more decreasing in the gap at 400 °C.

2013 ◽  
Vol 665 ◽  
pp. 159-167
Author(s):  
M.S. Jani ◽  
H.S. Patel ◽  
J.R. Rathod ◽  
K.D. Patel ◽  
V.M. Pathak ◽  
...  

In this paper structural and optical properties of CdSe thin films with different thickness deposited by thermal evaporation under vacuum onto glass substrates are presented. The structural investigations performed by means of XRD technique showed that the films have a polycrystalline and hexagonal (würtzite) structure. The values of some important parameters of the studied films (absorption coefficient and optical bandgap energy) are determined from transmission spectra. The values of the optical bandgap energy (Eg) calculated from the absorption spectra, ranged between 1.67 - 1.74 eV.


MRS Advances ◽  
2019 ◽  
Vol 4 (16) ◽  
pp. 937-944
Author(s):  
S.F.U. Farhad ◽  
S. Majumder ◽  
Md. A. Hossain ◽  
N.I. Tanvir ◽  
R. Akter ◽  
...  

AbstractCuprous oxide (Cu2O) thin films have been grown on both soda lime glass (SLG) microscope slides and Fluorine-doped Tin Oxide (FTO) substrates by a modified SILAR technique. The pH level of the bath solution was systematically varied in the range of 4.50 – 7.95 to elucidate their effect on the physical properties of the deposited product. The prepared films showed compact surface morphology composed of spherical grains evident from their SEM images. The XRD measurement showed that the as-deposited films were single phase Cu2O with (111) preferred orientation and this texturing was found to be increasing with increasing pH and annealing temperature. The annealed Cu2O films were found to be stable up to 200 °C and completely converted to cupric oxide (CuO) phases when the temperature reached to 350 °C. The estimated optical bandgaps of the as-grown samples were found in the range of 2.28 – 2.48 eV using UV-Vis-NIR transmission data and showing a bandgap narrowing trend with the decreasing level of solution pH. The effect of post-annealing temperatures (75-350 0C) on the as-deposited films was also studied and found to be crucial to control the optical bandgap (1.44 – 2.13) eV and electrical properties of the films. The sheet resistance of the as-deposited samples was found to be decreasing from 4120 MΩ/square to 800 MΩ/square while grown with increasing acetic acid content in the precursor solutions and decreasing up to 2.66 MΩ/square while annealing up to 250 °C in the air.


2019 ◽  
Vol 26 (03) ◽  
pp. 1850167 ◽  
Author(s):  
A. MAHROUG ◽  
B. MARI ◽  
M. MOLLAR ◽  
I. BOUDJADAR ◽  
L. GUERBOUS ◽  
...  

Undoped and magnesium-doped zinc oxide thin films were prepared by the sol–gel method. Results from X-ray diffraction indicated that the films exhibited a hexagonal wurtzite structure and were highly oriented along the [Formula: see text]-axis. The intensity of the (002) diffraction peak increased with increasing the Mg doping concentration. Also, Mg doping inhibited the growth of crystallite size which decreased from 46[Formula: see text]nm to 38[Formula: see text]nm with doping concentration. Morphological studies by atomic force microscopy (AFM) indicated the uniform thin film growth and the decreasing of grain size and surface roughness with Mg doping. Optical analysis showed that the average transmittance of all films was above 90% in the visible range and Mg doping has significantly enhanced the bandgap energy of ZnO. Two Raman modes assigned to [Formula: see text] and [Formula: see text] for the ZnO wurtzite structure were observed for all films. UV emission peak and three defect emission peaks in the visible region were observed by photoluminescence measurements at room temperature. The intensity ratio of UV emission to the visible emission increased with the Mg concentration. Photocurrent measurements revealed that all films presented the photoresponses with [Formula: see text]-type semiconducting behavior and their generated photocurrents were reduced by Mg doping. The prepared thin films of high quality with improved properties by Mg doping could be proposed to workers in the field of optoelectronic devices for using them as a strong candidate.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 724
Author(s):  
Tong Li ◽  
Masaya Ichimura

Magnesium hydroxide (Mg(OH)2) thin films were deposited by the drop-dry deposition (DDD) method using an aqueous solution containing Mg(NO3)2 and NaOH. DDD was performed by dropping the solution on a substrate, heating-drying, and rinsing in water. Effects of different deposition conditions on the surface morphology and optical properties of Mg(OH)2 thin films were researched. Films with a thickness of 1−2 μm were successfully deposited, and the Raman peaks of Mg(OH)2 were observed for them. Their transmittance in the visible range was 95% or more, and the bandgap was about 5.8 eV. It was found that the thin films have resistivity of the order of 105 Ωcm. Thus, the transparent and semiconducting Mg(OH)2 thin films were successfully prepared by DDD.


2021 ◽  
Vol 16 (2) ◽  
pp. 163-169
Author(s):  
Alaa Y. Mahmoud ◽  
Wafa A. Alghameeti ◽  
Fatmah S. Bahabri

The electrical properties of the Nickel doped cupric oxide Ni-CuO thin films with various doping concentrations of Ni (0, 20, 30, 70, and 80%) are investigated at two different annealing temperatures; 200 and 400 °C. The electrical properties of the films; namely thermal activation energy and electrical energy gap are calculated and compared. We find that for the non-annealed Ni-CuO films, both thermal activation energy and electrical energy gap are decreased by increasing the doping concentration, while for the annealed films, the increase in the Ni doping results in the increase in thermal activation energy and electrical energy gap for most of the Ni-CuO films. We also observe that for a particular concentration, the annealing at 200 °C produces lower thermal activation energy and electrical energy gap than the annealing at 400 °C. We obtained two values of the activation energy varying from -5.52 to -0.51 eV and from 0.49 to 3.36 eV, respectively, for the annealing at 200 and 400 °C. We also obtained two values of the electrical bandgap varying from -11.05 to -1.03 eV and from 0.97 to 6.71 eV, respectively, for the annealing at 200 and 400 °C. It is also noticeable that the increase in the doping concentration reduces the activation energy, and hence the electrical bandgap energies.


Coatings ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 248 ◽  
Author(s):  
Benjamin Schumm ◽  
Thomas Abendroth ◽  
Saleh A. Alajlan ◽  
Ahmed M. Almogbel ◽  
Holger Althues ◽  
...  

Multilayered nanocoatings allow outstanding properties with broad potential for glazing applications. Here, we report on the development of a multilayer nanocoating for zinc oxide (ZnO) and antimony doped tin oxide (ATO). The combination of ZnO and ATO thin films with their promising optical properties is a cost-efficient alternative for the production of energy-efficient glazing. It is an effective modification of the building envelope to reduce current high domestic demand of electrical power for air conditioning, especially in hot climates like Saudi Arabia. In this paper, we report the development of a nanocoating based on the combination of ZnO and ATO. Principle material and film investigations were carried out on lab-scale by dip coating with chemical solution deposition (CSD), while with regard to production processes, chemical vapor deposition (CVD) processes were evaluated in a second stage of the film development. It was found that with both processes, high-quality thin films and multilayer coatings with outstanding optical properties can be prepared. While keeping the optical transmission in the visible range at around 80%, only 10% of the NIR (near infrared) and below 1% of UV (ultraviolet) light passes these coatings. However, in contrast to CSD, the CVD process allows a free combination of the multilayer film sequence, which is of high relevance for production processes. Furthermore, it can be potentially integrated in float glass production lines.


2009 ◽  
Vol 23 (28) ◽  
pp. 3361-3368
Author(s):  
HELIANG FAN ◽  
XINQIANG WANG ◽  
QUAN REN ◽  
TINGBIN LI ◽  
JING SUN ◽  
...  

A series of polymeric thin films with BFDT (BFDT = 4,5-bis(foroylsulfanyl)-1,3-dithiole-2-thione) doped in PMMA (polymethylmethacrylate) were fabricated by means of spin-coating on quartz substrate. The third-order nonlinear optical properties of the films were investigated by Z-scan technique at 532 nm wavelength with 20 ps pulse width. The influences of doping concentration for third-order nonlinearity were also studied. A self-defocusing effect was observed from the Z-scan curves and the nonlinear refractive index of the film increases with the increase in doping concentration. Our results suggest that considerable nonlinear optical properties were found in BFDT. In addition, it was found that the nonlinear coefficient of the BFDT-doped PMMA thin film was about two orders of magnitude larger than that of homologous materials with organic solvents. By analysis, we can conclude that the material is a potential candidate for applications of nonlinear optics and can be considered in the fabrication of all-optical switching devices, etc.


2011 ◽  
Vol 58 (5(1)) ◽  
pp. 1320-1323 ◽  
Author(s):  
Min Young Cho ◽  
Hyun Young Choi ◽  
Min Su Kim ◽  
Jae-Young Leem ◽  
Dong-Yul Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document