A Novel High Frequency Low Voltage Low Power Current Mode Analog to Digital Converter Pipeline

2019 ◽  
Vol 15 (4) ◽  
pp. 368-378 ◽  
Author(s):  
Mounira Bchir ◽  
Thouraya Ettaghzouti ◽  
Néjib Hassen

This paper introduces a novel structure for the realization of a low voltage, low power current-mode analog to the digital converter (ADC) pipeline (12 bits). The proposed structure of the ADC is based on a novel design of a current comparator and Digital to Analog Converter (DAC) structure. This modification allows us to reach a higher speed, lower voltage, and lower power dissipation. ELDO simulators using 0.18 μm, CMOS and TSMC parameters are performed to confirm the workability of this architecture. The proposed ADC is powered with a 1 V supply voltage. It is characterized by wide conversion frequency (350 MHz) and low power consumption that is 2.76 mW.

Threshold Inverter Quantization (TIQ) for applications of system-on-chip (SoC) depending on CMOS flash analog-to-digital converter (ADC). The TIQ technique which uses two cascaded CMOS inverters as a voltage comparator. However, this TIQ method must be created to meet the latest SoC trends, which force ADCs to be integrated with another electronic circuit on the chip and focus on low-power and low-voltage applications. TIQ comparator reduced the impact of variations in the process, temperature, and power supply voltage. Therefore, we obtained a higher TIQ flash ADC speed and resolution. TIQ flash ADC reduced / managed power dissipation. We obtain large power savings by managing the power dissipation in the comparator. Furthermore, the new comparator has a huge benefit in power dissipation and noise rejection comparative to the TIQ comparator [1]. The findings indicate that the TIQ flash ADC based on Modied mux attain heavy-speed transformation and has a tiny size, low-power dissipation and operation of lowvoltage compared to another flash ADCs.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1004
Author(s):  
Massimo Vatalaro ◽  
Marco Lanuzza ◽  
Felice Crupi ◽  
Tatiana Moposita ◽  
Lionel Trojman ◽  
...  

This paper presents a novel low-power low-voltage analog implementation of the softmax function, with electrically adjustable amplitude and slope parameters. We propose a modular design, which can be scaled by the number of inputs (and of corresponding outputs). It is composed of input current–voltage linear converter stages (1st stages), MOSFETs operating in a subthreshold regime implementing the exponential functions (2nd stages), and analog divider stages (3rd stages). Each stage is only composed of p-type MOSFET transistors. Designed in a 0.18 µm CMOS technology (TSMC), the proposed softmax circuit can be operated at a supply voltage of 500 mV. A ten-input/ten-output realization occupies a chip area of 2570 µm2 and consumes only 3 µW of power, representing a very compact and energy-efficient option compared to the corresponding digital implementations.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650066 ◽  
Author(s):  
Pantre Kompitaya ◽  
Khanittha Kaewdang

A current-mode CMOS true RMS-to-DC (RMS: root-mean-square) converter with very low voltage and low power is proposed in this paper. The design techniques are based on the implicit computation and translinear principle by using CMOS transistors that operate in the weak inversion region. The circuit can operate for two-quadrant input current with wide input dynamic range (0.4–500[Formula: see text]nA) with an error of less than 1%. Furthermore, its features are very low supply voltage (0.8[Formula: see text]V), very low power consumption ([Formula: see text]0.2[Formula: see text]nW) and low circuit complexity that is suitable for integrated circuits (ICs). The proposed circuit is designed using standard 0.18[Formula: see text][Formula: see text]m CMOS technology and the HSPICE simulation results show the high performance of the circuit and confirm the validity of the proposed design technique.


Sign in / Sign up

Export Citation Format

Share Document