Modeling Heat Transfer Enhancement of Ferrofluid (Fe3O4–H2O) Flow in a Microchannel Filled with a Porous Medium

2021 ◽  
Vol 10 (1) ◽  
pp. 31-44
Author(s):  
Bullo Hindebu Rikitu ◽  
Oluwole Daniel Makinde ◽  
Lemi Guta Enyadene

Heat transfer characteristics and hydrodynamical properties of ferrofluid through microchannels with non-uniform permeable walls temperature and filled with porous media plays an important role in modern microfluidic applications, such as solar collectors, nuclear reactors, micro-electro-chemical cell transport, micro heat exchanging, microchip cooling, and electronic equipment. Therefore, this paper presents the investigation of ferrofluid (Fe3O4-H2O) heat transfer characteristics as well as hydrodynamical properties in a permeable microchannel with non-uniform permeable walls. The semi-discretization finite difference method is utilized to solve the highly non-linear partial differential equations that govern the momentum and energy equations. Accordingly, the numerical outcomes reveal that the ferrofluid velocity and temperature profiles indicate a rising trend as the pressure gradient parameter, the variable viscosity parameter, the Darcy number, the Eckert number, and Prandtl number increase. The Reynolds number, which is a suction/injection parameter, shows a contrary influence on the ferrofluid velocity and temperature whereas nanoparticles volume fraction and the Forchheimer constant show a decreasing effect on the ferrofluid velocity and temperature. The outcomes also depict that the coefficient of skin friction at the cold wall of the microchannel is larger for higher values of the nanoparticles volume fraction, the variable viscosity parameter, the Darcy number, and the Eckert number. Besides, the coefficient of skin friction at the hot wall rises with the Darcy number, and the Prandtl number. Furthermore, the heat transfer rate at both cold and hot walls of the microchannel increases as the variable viscosity parameter, the Darcy number, the Eckert number, and the Prandtl number increase. The nanoparticles volume fraction and Darcy number show a retarding effect on the heat transfer rate at both walls of the microchannel.

2018 ◽  
Vol 387 ◽  
pp. 182-193 ◽  
Author(s):  
Oluwole Daniel Makinde

Thermal decomposition of a variable viscosity nanofluid containing ethylene glycol (EG)-water mixture with silver (Ag) nanoparticles in a micro-channel with convective heat exchange at the walls is investigated. The model equations for momentum and energy balance are obtained and transformed into a nonlinear boundary value problem using lubrication approximation theory and tackled semi-analytically via perturbation method coupled with Hermite-Padé approximation techniques. EG to water volume ratios examined are 0:100%, 20:80%, 40:60%, 60:40%, 80:20% and 100:0% while the Ag nanoparticles volume fraction utilised are 0%, 5% and 10%. It is found that the critical Eckert number for nanofluid thermal stability and the Nusselt number are enhanced with an increase in the nanoparticles volume fraction while an increase of EG volume ratio in the base fluid lessens the critical Eckert number.


2012 ◽  
Vol 5 (1) ◽  
pp. 67-75 ◽  
Author(s):  
S. Parvin ◽  
R. Nasrin ◽  
M. A. Alim ◽  
N. F. Hossain

Analysis of Prandtl number effect on forced convective flow and thermal field characteristics inside an open cavity with porous wavy isothermal wall using water-CuO nanofluid have been performed numerically. The upper and lower surfaces are of temperature Th. The fluid enters from left and exits from right with initial velocity Ui and temperature Ti. Governing equations are discretized using the Finite Element Method. Simulation is carried out for a range of Prandtl number, Pr (from 1.47 to 8.81) and wave amplitude A (from 0 to 0.15) while Reynolds number, Re =100; Darcy number, Da = 100 and solid volume fraction,  = 5%. Results are presented in the form of streamlines, isothermal lines, rate of heat transfer, average temperature of the fluid and velocity at mid-height of the channel for various Pr and A. Increasing Pr and lessening A causes the enhancement of heat transfer rate.© 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v5i1.9641          J. Sci. Res. 5 (1), 67-75 (2013)


Author(s):  
Subramanian Muthukumar ◽  
Selvaraj Sureshkumar ◽  
Arthanari Malleswaran ◽  
Murugan Muthtamilselvan ◽  
Eswari Prem

Abstract A numerical investigation on the effects of uniform and non-uniform heating of bottom wall on mixed convective heat transfer in a square porous chamber filled with nanofluid in the appearance of magnetic field is carried out. Uniform or sinusoidal heat source is fixed at the bottom wall. The top wall moves in either positive or negative direction with a constant cold temperature. The vertical sidewalls are thermally insulated. The finite volume approach based on SIMPLE algorithm is followed for solving the governing equations. The different parameters connected with this study are Richardson number (0.01 ≤ Ri ≤ 100), Darcy number (10−4 ≤ Da ≤ 10−1), Hartmann number (0 ≤ Ha ≤ 70), and the solid volume fraction (0.00 ≤ χ ≤ 0.06). The results are presented graphically in the form of isotherms, streamlines, mid-plane velocities, and Nusselt numbers for the various combinations of the considered parameters. It is observed that the overall heat transfer rate is low at Ri = 100 in the positive direction of lid movement, whereas it is low at Ri = 1 in the negative direction. The average Nusselt number is lowered on growing Hartmann number for all considered moving directions of top wall with non-uniform heating. The low permeability, Da = 10−4 keeps the flow pattern same dominating the magnetic field, whereas magnetic field strongly affects the flow pattern dominating the high Darcy number Da = 10−1. The heat transfer rate increases on enhancing the solid volume fraction regardless of the magnetic field.


Author(s):  
R Tabassum ◽  
Rashid Mehmood ◽  
O Pourmehran ◽  
NS Akbar ◽  
M Gorji-Bandpy

The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.


Mixed convection in a lid-driven composite square cavity is studied numerically. The cavity is composed of two layers; a Cu–water nanofluid layer superposed a porous layer. The porous layer is saturated with the same nanofluid. The left and right walls of the cavity are thermally insulated. The bottom wall which is in contact with the porous layer is isothermally heated and being lid to the left, while the top wall is isothermally cooled and being lid to the right. Cavity walls are impermeable except the interface between the porous layer and the nanofluid. Maxwell-Brinkman model is invoked for the momentum exchange within the porous layer. Equations govern the conservation of mass, momentum, and energy within the two layers were modeled and solved numerically using under successive relaxation (USR) up- wind finite difference scheme. Four pertinent parameters are studied; nanoparticles volume fraction φ (0.0 - 0.05), porous layer thickness Wp (0.1 - 0.9), Darcy number Da (10-7 – 10-1), and Richardson number Ri (0.01 - 10). The results have showed that the existence of the porous layer in a specified value can enhance the convective heat transfer when Ri ≥ 1, while an adverse action of nanoparticles is recorded when Da ≥ 10-4.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Arunn Narasimhan ◽  
B. V. K. Reddy

Bidisperse porous medium (BDPM) consists of a macroporous medium whose solid phase is replaced with a microporous medium. This study investigates using numerical simulations, steady natural convection inside a square BDPM enclosure made from uniformly spaced, disconnected square porous blocks that form the microporous medium. The side walls are subjected to differential heating, while the top and bottom ones are kept adiabatic. The bidispersion effect is generated by varying the number of blocks (N2), macropore volume fraction (ϕE), and internal Darcy number (DaI) for several enclosure Rayleigh numbers (Ra). Their effect on the BDPM heat transfer (Nu) is investigated. When Ra is fixed, the Nu increases with an increase in both DaI and DaE. At low Ra values, Nu is strongly affected by both DaI and ϕE. When N2 is fixed, at high Ra values, the porous blocks in the core region have negligible effect on the Nu. A correlation is proposed to evaluate the heat transfer from the BDPM enclosure, Nu, as a function of Raϕ, DaE, DaI, and N2. It predicts the numerical results of Nu within ±15% and ±9% in two successive ranges of modified Rayleigh number, RaϕDaE.


2019 ◽  
Vol 14 (3) ◽  
Author(s):  
Javad Aminian Dehkordi ◽  
Arezou Jafari

Abstract The present study applied computational fluid dynamics (CFD) to investigate the heat transfer of Newtonian (water) and non-Newtonian (0.3 %wt. aqueous solution of carboxymethylcellulose (CMC)) fluids in the presence of Al2O3 nanoparticles. To analyze the heat transfer rate, investigations were performed in a vertical helical coil as essential heat transfer equipment, at different inlet Reynolds numbers. To verify the accuracy of the simulation model, experimental data reported in the literature were employed. Comparisons showed the validity of simulation results. From the results, compared to the aqueous solution of CMC, water had a higher Nusselt number. In addition, it was observed that adding nanoparticles to a base fluid presented different results in which water/Al2O3 nanofluid with nanoparticles’ volume fraction of 5 % was more effective than the same base fluid with a volume fraction of 10 %. In lower ranges of Reynolds number, adding nanoparticles was more effective. For CMC solution (10 %), increasing concentration of nanoparticles caused an increase in the apparent viscosity. Consequently, the Nusselt number was reduced. The findings reveal the important role of fluid type and nanoparticle concentration in the design and development of heat transfer equipment.


2019 ◽  
Vol 29 (10) ◽  
pp. 3685-3706
Author(s):  
Zafar Namazian ◽  
S.A.M. Mehryan

Purpose The purpose of this study is to numerically study the heat transfer of free convection of a magnetizable micropolar nanofluid inside a semicircular enclosure. Design/methodology/approach The flow domain is under simultaneous influences of two non-uniform magnetic fields generated by current carrying wires. The directions of the currents are the same. Although the geometry is symmetric, it is physically asymmetric. The impacts of key parameters, including Rayleigh number Ra = 103-106, Hartman number Ha = 0-50, vortex viscosity parameter Δ = 0-4, nanoparticles volume fraction φ = 0-0.04 and magnetic number Mnf = 0-1000, on the macro- and micro-scales flows, temperature and heat transfer rate are studied. Finding The outcomes show that dispersing of the nanoparticles in the host fluid increases the strength of macro- and micro-scale flows. When Mnf = 0, the increment of the vortex viscosity parameter increases the strength of the particles micro-rotations, while this characteristic is decreased by growing Δ for Mnf ≠ 0. The increment of Δ and Ha decreases the rate of heat transfer. The increment of Ha decreases the enhancement percentage of heat transfer rate because of dispersing nanoparticles, known as En parameter. In addition, the value of Δ has no effect on En. Moreover, the average Nusselt number Nuavg and En remain constant by increasing the magnetic number Mnf for different volume fraction values. Originality/value The authors believe that all of the results, both numerical and asymptotic, are original and have not been published elsewhere yet.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Eiyad Abu-Nada

Heat transfer enhancement in horizontal annuli using variable thermal conductivity and variable viscosity of CuO-water nanofluid is investigated numerically. The base case of simulation used thermal conductivity and viscosity data that consider temperature property dependence and nanoparticle size. It was observed that for Ra≥104, the average Nusselt number was deteriorated by increasing the volume fraction of nanoparticles. However, for Ra=103, the average Nusselt number enhancement depends on aspect ratio of the annulus as well as volume fraction of nanoparticles. Also, for Ra=103, the average Nusselt number was less sensitive to volume fraction of nanoparticles at high aspect ratio and the average Nusselt number increased by increasing the volume fraction of nanoaprticles for aspect ratios ≤0.4. For Ra≥104, the Nusselt number was deteriorated everywhere around the cylinder surface especially at high aspect ratio. However, this reduction is only restricted to certain regions around the cylinder surface for Ra=103. For Ra≥104, the Maxwell–Garnett and the Chon et al. conductivity models demonstrated similar results. But, there was a deviation in the prediction at Ra=103 and this deviation becomes more significant at high volume fraction of nanoparticles. The Nguyen et al. data and the Brinkman model give completely different predictions for Ra≥104, where the difference in prediction of the Nusselt number reached 50%. However, this difference was less than 10% at Ra=103.


Sign in / Sign up

Export Citation Format

Share Document