NOx Gas Sensing Properties of Fe-Doped ZnO Nanoparticles

2020 ◽  
Vol 12 (6) ◽  
pp. 908-914 ◽  
Author(s):  
Ahmad Umar ◽  
M. Alduraibi ◽  
Omar Al-Dossary

Herein, NOx, i.e., nitric oxide (NO) and nitrogen dioxide (NO2), gas sensors were fabricated using iron (Fe)-doped ZnO nanoparticles prepared via the facile hydrothermal process. The synthesized Fe-doped ZnO nanoparticles were analyzed through several techniques that revealed the well-crystallinity and dense growth of nanoparticles with the typical diameters of 25 ± 5 nm. The synthesized nanoparticles were utilized as a prospective material for the fabrication of NOx gas sensors operating at different temperatures, i.e., 350 °C, 400 °C, and 450 °C. The detailed sensing performances revealed that the optimum and most suitable sensing temperature for the fabricated sensors is 400 °C. In presence of 10 ppm NO gas, the fabricated sensor exhibited the highest gas response of 1.35 with a response (tresponse) and recovery (trecovery) time of 44 s and 402 s, respectively. Similarly, the fabricated NO2 gas sensor, in presence of 10 ppm gas shows the highest gas response of 1.33 with a response and recovery times of 50 s and 281 s, respectively. The presented results demonstrate that Fe-doped ZnO nanomaterials are capable to fabricate efficient NOx gas sensors.

2021 ◽  
Vol 16 (2) ◽  
pp. 337-342
Author(s):  
Gaoqi Zhang ◽  
Fan Zhang ◽  
Kaifang Wang ◽  
Shanyu Liu ◽  
Ying Wang ◽  
...  

Indoor formaldehyde detection is of great important at present. Using efficient solvothermal method, nanosheet-constructed and nanorod-constructed hierarchical tin dioxide (SnO2) microspheres were successfully synthesized in this work and used for the gas sensing material for indoor formaldehyde application. The as-prepared two kinds of SnO2 gas sensing materials were applied to fabricate the gas sensors and formaldehyde gas sensing experiments were carried out. The HCHO gas sensing tests indicate that the gas response of the nanosheet-constructed SnO2 microspheres is about 1.7 times higher than that of the nanorod-constructed SnO2 microspheres. In addition, both of the two SnO2 based gas sensors show almost fast response and recovery time to HCHO gas. For the nanosheet-constructed microspheres, the response value is estimated to be 32.0 at 350 °C to 60 ppm formaldehyde gas, while the response and recovery times are 7 and 5 s, respectively. The simple and efficient preparation method and improved gas sensing properties show that the as-synthesized hierarchical SnO2 microsphere that is constructed by a large amount of nanosheets exhibits significant potential application for the indoor formaldehyde sensing.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750022 ◽  
Author(s):  
Mengying Xu ◽  
Zhidong Lin ◽  
Wenying Guo ◽  
Yuyuan Hong ◽  
Ping Fu ◽  
...  

Fe2(MoO4)3 nanoplates were prepared via a simple hydrothermal process. The average crystalline size of these nanoplates is 85.8[Formula: see text]nm. The sensor based on Fe2(MoO4)3 shows a high gas sensing performance to xylene. The response of Fe2(MoO4)3 sensor is 25.9–100[Formula: see text]ppm xylene at optimum operating temperature of 340[Formula: see text]C. The response and recovery times to 100[Formula: see text]ppm xylene are 4 and 10[Formula: see text]s, respectively. Furthermore, the Fe2(MoO4)3 sensor exhibits remarkable selectivity detection of xylene gas with negligible responses to toluene and benzene. Therefore, the Fe2(MoO4)3 is a promising material for the detection of xylene gas sensors.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5910
Author(s):  
Andrea Gaiardo ◽  
Giulia Zonta ◽  
Sandro Gherardi ◽  
Cesare Malagù ◽  
Barbara Fabbri ◽  
...  

Among the various chemoresistive gas sensing properties studied so far, the sensing response reproducibility, i.e., the capability to reproduce a device with the same sensing performance, has been poorly investigated. However, the reproducibility of the gas sensing performance is of fundamental importance for the employment of these devices in on-field applications, and to demonstrate the reliability of the process development. This sensor property became crucial for the preparation of medical diagnostic tools, in which the use of specific chemoresistive gas sensors along with a dedicated algorithm can be used for screening diseases. In this work, the reproducibility of SmFeO3 perovskite-based gas sensors has been investigated. A set of four SmFeO3 devices, obtained from the same screen-printing deposition, have been tested in laboratory with both controlled concentrations of CO and biological fecal samples. The fecal samples tested were employed in the clinical validation protocol of a prototype for non-invasive colorectal cancer prescreening. Sensors showed a high reproducibility degree, with an error lower than 2% of the response value for the test with CO and lower than 6% for fecal samples. Finally, the reproducibility of the SmFeO3 sensor response and recovery times for fecal samples was also evaluated.


2007 ◽  
Vol 1035 ◽  
Author(s):  
Amandeep Saluja ◽  
Jie Pan ◽  
Lei Kerr ◽  
Eunjung Cho ◽  
Seth Hubbard

AbstractIn this work, various ZnO nanostructures were synthesized and a detailed study on the effect of different process parameters such as temperature, carrier gas flow, inter-electrode spacing, gas concentration and material properties on gas sensitivity was conducted. Initial ZnO nanoparticles were prepared by a simple solution chemical process and characterized by Secondary Electron Microscopy (SEM) and Brunauer, Emmet and Teller (BET) Sorptometer to demonstrate the morphology and surface area respectively. Sensitivity of nano-platelets and porous films was measured for different concentrations of the analytes (H2, CO). High response was observed at room temperature for H2 gas with sensitivities in excess 80% for 60ppm and about 55% for 80ppm of H2 gas at room temperature were observed for the nano-platelets and the porous films respectively with short response and recovery times of about 200 seconds. The sensitivity of the nano-platelets to CO gas was also measured and found to be about near 90% for 80 ppm CO at operating temperatures of 200 °C.


2013 ◽  
Vol 873 ◽  
pp. 304-310 ◽  
Author(s):  
Jin Zhang ◽  
Yu Min Zhang ◽  
Chang Yi Hu ◽  
Zhong Qi Zhu ◽  
Qing Ju Liu

The gas-sensing properties of zinc doped lanthanum ferrite (Zn-LaFeO3) compounds for formaldehyde were investigated in this paper. Zn-LaFeO3 powders were prepared using sol-gel method combined with microwave chemical synthesis. The powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The formaldehyde gas-sensing characteristics for the sample were examined. The experimental results indicate that the sensor based on the sample Zn-LaFeO3 shows excellent gas-sensing properties to formaldehyde gas. At the optimal operating temperature of 250°C, the sensitivity of the sensor based on LaFe0.7Zn0.3O3 to 100ppm formaldehyde is 38, while to other test gases, the sensitivity is all lower than 20. The response and recovery times for the sample to formaldehyde gas are 100s and 100s, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Hao Zhou ◽  
Dong-Yao Xu ◽  
Hai-Qing Zuo ◽  
Wei Liu ◽  
Shuang Lin

Urchin-like Cu-W18O49and flower-like Cu-WO3structures were successfully synthesized using a hydrothermal process followed by calcination. The synthesized products were characterized using XRD, SEM, and TEM. The results revealed that the as-prepared urchin-like and flower-like samples with monoclinic structures, which were approximately 1 μm and 1-2 μm, respectively, possessed microflower architecture assembled by the nanosheet. In addition, the gas sensing properties of monoclinic-structured Cu-WO3to acetone were measured using a static state gas sensing test system. The sensor based on the flower-like Cu-WO3nanostructures, which were calcined at 600°C, exhibited high sensitivity toward 10 ppm acetone at an optimum temperature of 110°C, and the maximum sensitivity reached 40, which was approximately four times higher than that of urchin-like WO3that was annealed at 300°C. The sensitivity was improved by increasing the acetone concentration. The detection limit was as low as 1 ppm. Using linear fit, the sensor was determined to be sufficiently sensitive to detect acetone in a detection range of 1 to 10 ppm even in the presence of interfering gases, which suggests that this type of sensor has excellent selectivity and has the potential for use in acetone gas sensors in the future.


2011 ◽  
Vol 492 ◽  
pp. 308-311 ◽  
Author(s):  
Wu Bin Gao ◽  
Cheng Dong ◽  
Xu Liu ◽  
Yun Han Ling ◽  
Jia Lin Sun

Gas sensor based on point contact tungsten trioxide (WO3) was prepared by in-situ induction-heating thermal oxidation of tungsten filaments. X-ray diffractometry (XRD) and field emission scanning electron microscopy (FESEM) were employed to analyze the phase and the morphology of the fabricated thin films. The results showed that the WO3films exhibited a monoclinic phase and were composed of hierarchical micro and nano crystals. The NO2(1-8 ppm) sensing properties of the point contact sensors based on Pure and Au-sputtering doped (2.5 at%) WO3films were investigated. The results showed that the gas sensing properties of the Au (2.5 at%) doped WO3sensors were superior to those of the undoped. The obtained point contact WO3sensor exhibited the maximum NO2gas response at 100°C.


2014 ◽  
Vol 809-810 ◽  
pp. 731-736
Author(s):  
Qin Zhu ◽  
Yu Min Zhang ◽  
Jin Zhang ◽  
Zhong Qi Zhu ◽  
Qing Ju Liu

A new gas sensor with high response and selectivity was fabricated by using molecularly imprinted powders (MIPs) which provide special recognition sites to methanol. The MIPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fourier transform infrared spectrometer (FT-IR), respectively. The gas sensing properties of MIPs to methanol were investigated. The experimental results indicate that the sensors based on the MIPs show excellent gas sensing properties to methanol vapor, and the properties of the sensor with x=6:10 (x= methyl acrylic acid: LaFeO3, molar ratio) are the best. At the optimal operating temperature of 130°C, the response of the sensor (x=6:10) to 1 ppm methanol is 21, and the response and recovery times are 57 s and 67 s, respectively.


Sign in / Sign up

Export Citation Format

Share Document