Integrated Sensitivity Adjustment for 3D Hall Sensors

2009 ◽  
Vol 7 (3) ◽  
pp. 313-316 ◽  
Author(s):  
M. Stahl-Offergeld ◽  
H.-P. Hohe ◽  
J. Sauerer
2013 ◽  
Vol 11 (1) ◽  
pp. 84-86
Author(s):  
Markus Stahl-Offergeld ◽  
Roland Ernst ◽  
Hans-Peter Hohe ◽  
Andreas Schütze

2014 ◽  
Vol 134 (7) ◽  
pp. 186-192
Author(s):  
Ichiro Shibasaki
Keyword(s):  

2012 ◽  
Author(s):  
I. Ďuran ◽  
J. Sentkerestiová ◽  
K. Kovařík ◽  
L. Viererbl

Author(s):  
Sergey Pisetskiy ◽  
Mehrdad Kermani

This paper presents an improved design, complete analysis, and prototype development of high torque-to-mass ratio Magneto-Rheological (MR) clutches. The proposed MR clutches are intended as the main actuation mechanism of a robotic manipulator with five degrees of freedom. Multiple steps to increase the toque-to-mass ratio of the clutch are evaluated and implemented in one design. First, we focus on the Hall sensors’ configuration. Our proposed MR clutches feature embedded Hall sensors for the indirect torque measurement. A new arrangement of the sensors with no effect on the magnetic reluctance of the clutch is presented. Second, we improve the magnetization of the MR clutch. We utilize a new hybrid design that features a combination of an electromagnetic coil and a permanent magnet for improved torque-to-mass ratio. Third, the gap size reduction in the hybrid MR clutch is introduced and the effect of such reduction on maximum torque and the dynamic range of MR clutch is investigated. Finally, the design for a pair of MR clutches with a shared magnetic core for antagonistic actuation of the robot joint is presented and experimentally validated. The details of each approach are discussed and the results of the finite element analysis are used to highlight the required engineering steps and to demonstrate the improvements achieved. Using the proposed design, several prototypes of the MR clutch with various torque capacities ranging from 15 to 200 N·m are developed, assembled, and tested. The experimental results demonstrate the performance of the proposed design and validate the accuracy of the analysis used for the development.


2004 ◽  
Vol 04 (02) ◽  
pp. L345-L354 ◽  
Author(s):  
Y. HADDAB ◽  
V. MOSSER ◽  
M. LYSOWEC ◽  
J. SUSKI ◽  
L. DEMEUS ◽  
...  

Hall sensors are used in a very wide range of applications. A very demanding one is electrical current measurement for metering purposes. In addition to high precision and stability, a sufficiently low noise level is required. Cost reduction through sensor integration with low-voltage/low-power electronics is also desirable. The purpose of this work is to investigate the possible use of SOI (Silicon On Insulator) technology for this integration. We have fabricated SOI Hall devices exploring the useful range of silicon layer thickness and doping level. We show that noise is influenced by the presence of LOCOS and p-n depletion zones near the edges of the active zones of the devices. A proper choice of SOI technological parameters and process flow leads to up to 18 dB reduction in Hall sensor noise level. This result can be extended to many categories of devices fabricated using SOI technology.


2011 ◽  
Vol 128-129 ◽  
pp. 85-91
Author(s):  
Yi Fan Zeng ◽  
Rui Li

This paper proposes a novel method called arithmetic operations to analyze and process the generated voltage-signal from the single pair-pole magnetic encoder. Dual orthogonal voltage-signals are generated by two vertical hall sensors which are placed in the bottom of a columned magnet. When signals pass A/D converter, the quadrant determination, arithmetic operations and nonlinear correction in FPGA chip are performed before the values of rotational angle are displayed on the LED. This paper also designs and implements the single pair-pole magnetic encoder which has advantages such as high-speed, high-resolution and high-accuracy in the area of angle measurement.


2000 ◽  
Vol 36 (5) ◽  
pp. 3673-3675 ◽  
Author(s):  
Wei Ye ◽  
P. Scala ◽  
Ko-Wei Lin ◽  
R.J. Gambino

Sign in / Sign up

Export Citation Format

Share Document